
Ruby Language Overview
• Dynamically typed
• Interpreted
• Can be modified at runtime
• Object oriented
• Blocks & lambdas
• Nice support for Regular Expressions

Getting Started with Ruby (irb)
IRB = Interactive RuBy console

in your terminal, type:

$ irb

>> 4 + 4

=> 8

General Syntax Notes
Ruby aims to be elegant and readable so punc-
tuation and boilerplate are minimal. No semi-
colons are needed to end lines, but may be used
to separate statements on the same line. Indent-
ing is not significant, unlike python.

this is a comment

A backslash (\) at the end of a line is used for
continuation

Parentheses required only as needed to specify
precedence.

>> "Hello".gsub ‘H’, ‘h’

=> "hello"

>> "Hello".gsub("H", "h").reverse

=> "olleh"

Ruby Language • Blazing Cloud! page 1 of 22!

Variables
Variable names are composed
of letters, numbers and under-
scores

There is no need to declare
variables (like C or Java)

In Ruby, everything is an object.
There are no special literals like you may have seen in other languages, even numbers and
strings are objects.

Try this in irb:

>> "test".upcase

>> "test".class

>> "test".methods

Notice that everything evaluates to some value.

>> 2 + 2

>> (2+2).zero?

Methods
• Methods are Messages
• Operators are methods

Method names may end with "?", "!", or "=".

• Methods ending with a "?" imply a boolean return value. These kinds of methods are called
"predicates." Common examples are empty?, nil?, and instance_of?

• Methods ending with "!" imply something changes to the object itself, like strings being modi-
fied in place (eg, "upcase!"), or in Rails this convention is used in methods that throw excep-
tions on failure.

• Methods ending with "=" are setters.

Ruby Language • Blazing Cloud! page 2 of 22!

An Introduction to Classes and Methods
We define a new type of object by writing a "class." The behavior of the object is defined in
blocks of code we call "methods."

class Calculator!

! def describe

! ! "I am a really neat calculator!"

! end!

! def add(a, b)

! ! a + b

! end

end

To load a class (or any ruby file), start irb in the same directory, load the calculator, then you
can use the Ruby class defined in the file.

>> load "calculator.rb"

>> c = Calculator.new

>> c.describe

>> c.add(1,2)

>> c.add(56, 45)

Ruby Language • Blazing Cloud! page 3 of 22!

Return Values
Notice that the value returned from
the method is whatever was last
evaluated.

Ruby has a return keyword, but peo-
ple use it rarely. It will let you return
from the middle of a method, which is
rarely a good idea.

Instance Variables
When we want to associate data with an object, we define an instance variable
by naming the variable with an @ at the beginning of its name.

class Calculator

! def initialize

! ! @num_calculations = 0

! end

! def how_many

! ! @num_calculations

! end

! def add(a, b)

! ! @num_calculations = @num_calculations + 1

! ! a + b

! end

end

More about Classes
Class names are constants, and must start with a capital letter.

Classes can inherit from other classes. The derived class, “subclass” can access behavior
and data from the super class.

Here, SpecialThing is a subclass of Thing.

class Thing

 def do_something(a,b)

 a + b

 end

end

class SpecialThing < Thing

 # special code would go here

end

	

Ruby Language • Blazing Cloud! page 4 of 22!

Attributes
To make an instance variable accessible outside of the context of a class, methods need to be
declared to access it...

class Thing

 def name=(n)

 @name = n

 end

 def name

 @name

 end

end

Ruby provides short-cuts that allow you to access instance variables without declaring meth-
ods

class Thing

 attr_accessor :name

 attr_reader :created_at

 attr_writer :something

Special Kinds of Variables
Class variables belong to the innermost enclosing class or module. Class variables used at the
top level are defined in Object, and behave like global variables.

var # a local variable
@var # instance variable
@@var # class variable

VAR # constant
$var # global variable

Ruby Language • Blazing Cloud! page 5 of 22!

Constants
Constants defined within a class or module may be accessed unadorned anywhere within the
class or module. Class variables belong to the innermost enclosing class or module. Class
variables used at the top level are defined in Object, and behave like global variables.

Outside the class or module, they may be accessed using the scope operator, ``::ʼʼ prefixed by
an expression that returns the appropriate class or module object. Constants defined outside
any class or module may be accessed unadorned or by using the scope operator ``::ʼʼ with no
prefix.

Constants may not be defined in methods.

Class variables are available throughout a class or module body. Class variables must be ini-
tialized before use. A class variable is shared among all instances of a class and is available
within the class itself.

Example:

TAX = 0.085

class Payment

 TIP = 0.15

 def calculate(amount)

 amount += amount * (TIP + TAX)

 end

end

>> TAX

=> 0.085

>> TIP

NameError: uninitialized constant TIP

! from (irb):11

>> Payment::TIP

=> 0.15

>> p = Payment.new.calculate(100)

=> 123.5

Ruby Language • Blazing Cloud! page 6 of 22!

Class Variables
A class variable will store data that is shared by all instances of the class.

Example:

class Song

 @@total_songs = 0

 def initialize

 @@total_songs += 1

 end

 def Song.total

 @@total_songs

 end

end

>> load ‘song.rb’

=> true

>> s = Song.new

>> Song.total

=> 1

>> s2 = Song.new

>> Song.total

=> 2

Ruby Language • Blazing Cloud! page 7 of 22!

Modules	 as	 Mixins

Ruby does not support multiple inheritance directly but Ruby modules pretty much eliminate
the need for multiple inheritance, providing a facility called a mixin.

module Speech

 def speak

 puts @noise

 end

end

class Dog

 include Speech

 def initialize

 @noise = "woof"

 end

end

class Bird

 include Speech

 def initialize

 @noise = "tweet"

 end

end

>> Dog.new.speak

woof

 => nil

>>> Bird.new.speak

tweet

 => nil

You may include multiple modules. Note that name clashes are not flagged -- the last one
wins, following Ruby's policy of re-definition.

Ruby Language • Blazing Cloud! page 8 of 22!

Conditionals
if expressions are used for conditional execution. The values false and nil are false, and every-
thing else are true.

!

if may act as modifiers

The case expressions are also for conditional execution.
Case comparisons are done by the "threequal" operator ===.

conditionals brought to you by:
http://web.njit.edu/all_topics/Prog_Lang_Docs/html/ruby/syntax.html#control

Ruby Language • Blazing Cloud! page 9 of 22!

if age >= 12 then

! print "adult fee\n"

else

! print "child fee\n"

end

if age >= 18 then

! print "can vote\n"

elsif age >= 13 then

! print "can facebook\n"

else

! print "child\n"

end

print "debug\n" if $debug

case $age
! when 0 .. 2
! "baby"
! when 3 .. 6
! "little child"
when 7 .. 12
! "child"
when 12 .. 18
 # Note: 12 already
matched
 "youth"
else
 "adult"
end

http://web.njit.edu/all_topics/Prog_Lang_Docs/html/ruby/syntax.html#
http://web.njit.edu/all_topics/Prog_Lang_Docs/html/ruby/syntax.html#

Truth

Checking for false:

if !(name == “superman”) …

if not (name == “superman”) …

“unless” provides us with another way of checking
if a condition is false:

unless human

! status = “superhero”

end

Boolean Operators
Evaluates left hand side, then if the result is true, evaluates right hand side.

! test && set

! test and set

Evaluates left hand side, then if the result is false, evaluates right hand side. The value re-
turned is the right-hand side.

! demo || die

! demo or die

A common idiom is to use ||= to initialize an instance variable if it has not yet been set.

! @x ||= "something"

Ruby Language • Blazing Cloud! page 10 of 22!

Everything evaluates to true
except for:

 false

 nil

Therefore:

 0 is true

 "" is true

String Interpolation
Ruby provides a concise syntax for inserting the result on an expression into a string.
>> a = "world"
>> puts "hello #{a}"
hello world

>> a = 2
>> puts "hello #{a}"
hello 2

>> a = nil
>> puts "hello #{a}"
hello
"string #{ruby code} string"

Common String Operations

Ruby Language • Blazing Cloud! page 11 of 22!

"Ru" + "by"
=> "Ruby"

"I" << "love" << "Ruby"
=> "IloveRuby"

myString = "Welcome to JavaScript!"

myString["JavaScript"]= "Ruby"

puts myString
=> "Welcome to Ruby!"

myString[10]= " the land of "

puts myString
=> "Welcome to the land of Ruby!"

s[8..18] = "friends"
=> "friends"

puts myString
=> "Welcome friends of Ruby!"

To change case:
	 capitalize	 -‐	 first	 character	 to	 uppercase
	 downcase	 -‐	 all	 to	 lower	 case
	 swapcase	 -‐	 changes	 the	 case	 of	 all	 le3ers
	 upcase	 -‐	 all	 to	 upper	 case

To rejustify:
	 center	 -‐	 add	 white	 space	 to	 center	 the	 string
	 ljust	 -‐	 pads	 string,	 le7	 jus9fied
	 rjust	 -‐	 pads	 string,	 right	 jus9fied

To trim:
	 chop	 -‐	 remove	 last	 character
	 chomp	 -‐	 remove	 trailing	 line	 separators
	 squeeze	 -‐	 reduces	 successive	 equal	 chars
	 strip	 -‐	 deletes	 leading	 and	 trailing	 white	 space

To examine:
	 count	 -‐	 return	 a	 count	 of	 matches
	 empty?	 -‐	 returns	 true	 if	 empty
include?	 -‐	 is	 a	 specified	 target	 string	 present?
index	 -‐	 return	 the	 posi9on	 of	 one	 string	 in	 an-‐
other
length	 or	 size	 -‐	 return	 the	 length	 of	 a	 string
rindex	 -‐	 returns	 the	 last	 posi9on	 of	 one	 string	
in	 another
slice	 -‐	 returns	 a	 par9al	 string

To alter:
replace	 -‐	 replace	 one	 string	 with	 another
reverse	 -‐	 turns	 the	 string	 around
slice!	 -‐	 deletes	 a	 par9al	 string,	 returns	 deleted	 part
split	 -‐	 returns	 an	 array	 of	 par9al	 strings	 exploded	 at	 separator
tr	 -‐	 to	 map	 all	 specified	 char(s)	 to	 other	 char(s)
tr_s -‐	 as	 tr,	 then	 squeeze	 out	 resultant	 duplicates
unpack	 -‐	 extract	 string	 into	 an	 array	 using	 a	 template

To iterate:
	 each_line	 -‐	 process	 each	 line	 in	 a	 string
	 each_byte	 -‐	 process	 each	 byte	 in	 turn

For	 more	 information,	 see:	 	 http://www.ruby-‐doc.org/core/classes/String.html

Ruby Language • Blazing Cloud! page 12 of 22!

To format:
sprintf(format, ...)	 -‐	 returns	 a	 string	 forma3ed	
according	 to	 a	 format	 like	 the	 prinE	 in	 C

"cat	 dog	 hat".split("	 ").join(",")
=>	 "cat,dog,hat"

"abc".each_byte{|c|	 prinE	 "<%c>",	 c};	 print	 "\n"
<a><c>
=>	 nil

"hello".gsub(/[aeiou]/,	 '*')	 	 	 	 	 	 	 	 	 	 	 	 	 	
=>	 "h*ll*"

65.chr	 =>	 "A"

gsub	 returns	 a	 modified	 string,	 leaving	 the	 original	 string	
unchanged.	
gsub!	 directly	 modify	 the	 string	 object	 on	 which	 the	
method	 was	 called.

http://www.ruby-doc.org/core/classes/String.html
http://www.ruby-doc.org/core/classes/String.html

Collections

Arrays are sized dynamically and can be of mixed
types.

%w shortcut

Since many arrays are composed of a series of
strings, Ruby provides a shortcut for this kind of ar-
ray creation.

>> animals = %w{cat, dog, frog}
=> ["cat,", "dog,", "frog"]

Hashes an unordered list of key-value
pairs.

In other languages they may be called a
dictionary, a map or an associative array

=> is called a "hash rocket"

Ruby Language • Blazing Cloud! page 13 of 22!

>> a = [1, 2, 3]
>> a.push "four"
=> [1, 2, 3, "four"]

>> a.pop
=> "four"

>> a[0]
=> 1

>> states = {"MA" => "Massachusetts",
 "CA" => "California"}

>> states["MA"]
=> Massachusetts
>> my_hash = {:a_symbol => 3,
 "a_string"=> 4}

>> my_hash[:a_symbol]
=> 3

Iteration

>> 4.times do
?> puts "hello"
?> end

hello
hello
hello
hello

>> 2.times {puts "foo"}
foo
foo

my_array = ["cat", "dog", "world"]
my_array.each do |item|
 puts "hello " + item
end

my_hash = { :type => "cat",
 :name => "Beckett",
 :breed => "alley cat" }

my_hash.each do |key, value|
 puts "My " + key.to_s + " is " + value
end

Ruby Language • Blazing Cloud! page 14 of 22!

Enumerables
Ruby's Enumerable module has methods for all kinds of tasks that operate on a collection.
Most likely if you can imagine a use for the #each method other than simply iterating, there is a
good change a method exists to do what you had in
mind. Arrays and hashes are Enumerable.

• Collection objects (like Array, Hash, etc.)
“mixin” the Enumerable module

• The Enumerable module gives objects of collec-
tion classes additional collection- specific behav-
iors.

• The class requiring the Enumer- able module
must have an #each method be- cause the addi-
tional collection-specific behav- iors given by
Enumerable are defined in terms of #each

Creating an Enumerable Collec- tion
All you need to do to make your own class respond to all
of the Enumerable methods is to de!ne an #each method,
since every Enumerable method can be implemented with
each.

How do you know if something is Enumerable?
To see if you can call these methods, you can check if an instance responds to a particular
method (preferred in code) or you can test the instance or class:

>> a = [1,2,3]

=> [1, 2, 3]

>> a.respond_to? :any?

=> true

>> a.is_a? Enumerable

=> true

>> Array < Enumerable

=> true

Try this to see all of the classes that mixin Enumerable:

>> ObjectSpace.each_object(Class) { |cl| puts cl if cl < Enumerable}

Ruby Language • Blazing Cloud! page 15 of 22!

>> talk {puts “whatever”}
hello
whatever
goodbye
=> nil

>> talk_much {puts “hey”}
hello
hey
hey
hey
bye
=> nil

Sources
This section is based on this excellent post:
http://vision-media.ca/resources/ruby/ruby-enumerable-method-examples

Please also see reference docs: http://ruby-doc.org/core/classes/Enumerable.html

Our test subject for the following examples will be the following array:

 vehicles = %w[car truck boat plane helicopter bike]

Standard Iteration With Each
Standard iteration is performed using the each method. This is typical in many languages. For
instance in PHP this would be for each however in Ruby this is not built-in, rather this is a
method call on the vehicles array object. The sample code below simply outputs a list of our
vehicles.

vehicles.each do |vehicle|
 puts vehicle
end

Modifying Every Member with Map
The map method allows us to modify each member in the same way and return a new collec-
tion with new members that were produced by the code inside our block.

>> vehicles.map { |v| v.upcase }

=> ["CAR", "TRUCK", "BOAT", "PLANE", "HELICOPTER", "BIKE"]

Searching Members With Grep
The grep method allows us to 'search' for members using a regular expression. Our first ex-
ample below returns any member which contains an 'a'. The grep method also accepts a block,
which is passed each matching value, 'collecting' the results returned and returning those as
shown in the second example.

vehicles.grep /a/

=> ["car", "boat", "plane"]

vehicles.grep(/a/) { |v| v.upcase }

=> ["CAR", "BOAT", "PLANE"]

Evaluating All Members With all?
The all? method accepts a block and simply returns either true or false based on the evalua-
tion within the block.

vehicles.all? { |v| v.length >= 3 }

=> true

Ruby Language • Blazing Cloud! page 16 of 22!

http://vision-media.ca/resources/ruby/ruby-enumerable-method-examples
http://vision-media.ca/resources/ruby/ruby-enumerable-method-examples
http://ruby-doc.org/core/classes/Enumerable.html
http://ruby-doc.org/core/classes/Enumerable.html

vehicles.all? { |v| v.length < 2 }

=> false

Checking Evaluation For A Single Using Any?
The any? method compliments all? in the fact that when the block evaluates to true at any
time, then true is returned.

vehicles.any? { |v| v.length == 3 }

=> true

vehicles.any? { |v| v.length > 10 }

=> false

Enumerable Methods with Complex Data
For our next examples we will be working with vehicles as well, however more complex data
structures using Hashes.

irb
>> load ‘vehicles.rb’
>> $vehicles

Collecting a List
The collect method is meant for this very task. Collect accepts a block whose values are col-
lected into an array. This is commonly used in conjunction with the join method to create
strings from complex data.

$vehicles.collect { |v| v[:name] }

=> ["Car", "Truck", "Boat", "Plane", "Helicopter", "Bike", "Sea
Plane"]

$vehicles.collect { |v| v[:name] }.join ', '

=> "Car, Truck, Boat, Plane, Helicopter, Bike, Sea Plane"

Note: this is a synonym for map

Ruby Language • Blazing Cloud! page 17 of 22!

Finding Members Using The Find Method
The find and find_all methods are the same although different in the obvious fact that one halts
iteration after it finds a member, the other continues and finds the rest.

Consider the following examples, we are simply trying to find members that match names,
have many wheels, or are ground or air based. The collect method is used to collect arrays of
the names for demonstration display purposes, instead of displaying data from the #inspect
method.

$vehicles.find { |v| v[:name] =~ /Plane/ }[:name]

=> "Plane"

$vehicles.find_all { |v| v[:name] =~
/Plane/ }.collect { |v| v[:name] }

=> ["Plane", "Sea Plane"]

$vehicles.find_all { |v| v[:wheels] > 0
}.collect { |v| v[:name] }

=> ["Car", "Truck", "Bike"]

$vehicles.find_all { |v| v[:classes].include? :ground }.collect { |v|
v[:name] }

=> ["Car", "Truck", "Bike", "Sea Plane"]

$vehicles.find_all { |v| v[:classes].include? :air }.collect { |v|
v[:name] }

=> ["Plane", "Helicopter", "Sea Plane"]

Iterating With Storage Using Inject
When you are looking to collect values during iteration the inject method is the perfect one for
the job. This method accepts a initialization parameter which is 0 and [] in the case below, this
is then passed

$vehicles.inject(0) { |total_wheels, v| total_wheels += v[:wheels] }

=> 10

$vehicles.inject([]) { |classes, v| classes + v[:classes] }.uniq

=> [:ground, :water, :air]

Ruby Language • Blazing Cloud! page 18 of 22!

class MyCollection

 include Enumerable
 #lots of code

 def each
 #more code
 end
end

Regular Expressions
Regular expressions allow matching and manipulation of textual data. They are abbreviated
as regex or regexp, or alternatively, just patterns

Using Regular Expressions in Ruby

• Scan a string for multiple occurrences of a pattern.
• Replace part of a string with another string.
• Split a string based on a matching separator.

Regular expressions appear between two forward slashes: /match_me/

Match Method
Match is a method on both String and Regexp classes.

>> category = "power tools"

=> "power tools"

>> puts "on Sale" if category.match(/power tools/)

on Sale

>> puts "on Sale" if /power tools/.match(category)

on Sale

Match Operator =~
The match operator is like the match method, but returns the index of the match or nil. It is
also defined for both String and Regexp classes.

>> category = "shoes"

=> "shoes"

>> puts "15 % off" if category =~ /shoes/

15 % off

>> puts "15 % off" if /shoes/ =~ category

15 % off

>> /pants/ =~ category

=> nil

>> /shoes/ =~ category

Ruby Language • Blazing Cloud! page 19 of 22!

=> 0

>> category = "women's shoes”
>> /shoes/ =~ category

=> 8

scan to find multiple matches:

>> numbers = "one two three"

=> "one two three"

>> numbers.scan(/\w+/)

=> ["one", "two", "three”]

split on a regular expression:

>> "one two\tthree".split(/\s/)

=> ["one", ”two", "three"]

gsub to replace the matched pattern

”fred,mary,john".gsub(/fred/, “XXX”)

=> “XXX,mary,john”

may also be called with a block

"one two\tthree".gsub(/(\w+)/) do |w|
 puts w
end

one
two
three

Title Case Example
Capitalize All Words of a Sentence:

>> full_name.gsub(/\b\w/){|s| s.upcase}
=> "Yukihiro Matsumoto"

Ruby Language • Blazing Cloud! page 20 of 22!

Blocks

Blocks are nameless functions. Blocks were designed for loop abstraction. The most basic
usage of blocks is to let you define your own way for iterating over the items in a collection.

def talk
 puts "hello"
 yield
 puts "goodbye"
end

You can call yield multiple times:

def talk_much
 puts “hello”
 yield
 yield
 yield
 puts “bye”
end

You may also explicitly declare the block as an argument and then use the “call” method to in-
voke the block. The following example is functionally identical to the first:

def talk(&block)
 puts "hello"
 block.call
 puts "goodbye"
end

If you want to turn a snippet of code into a block, you can use the lambda function:

def contrived_example
 do_something = lambda { puts "foo" }
 do_something.call
end

For more information about blocks, lambdas and their close cousin Proc, read this good article:
http://eli.thegreenplace.net/2006/04/18/understanding-ruby-blocks-procs-and-methods/

Ruby Language • Blazing Cloud! page 21 of 22!

http://eli.thegreenplace.net/2006/04/18/understanding-ruby-blocks-procs-and-methods/
http://eli.thegreenplace.net/2006/04/18/understanding-ruby-blocks-procs-and-methods/

method_missing
When you send a message to a Ruby object, Ruby looks for a method to invoke with the same
name as the message you sent.

There are a bunch of different ways to send the message, but the most common one is:

obj.method_name

But you can make the fact that you are sending a
message explicit with:

obj.send(:method_name)

First it looks in the current self objectʼs own scope: in
local variable, then instance methods. Then it looks
in the list of instance methods that all objects of that class share, and then in each of the in-
cluded modules of that class, in reverse order of inclusion. Then it looks in that classʼs super-
class, and then in the superclassʼs included modules, all the way up until it reaches the class
Object. If it still canʼt find a method, the very last place it looks is in the Kernel module, included
in the class Object. And there, if it comes up short, it calls method_missing.

You can override method_missing anywhere along that method lookup path, and tell Ruby
what to do when it canʼt find a method.

http://www.thirdbit.net/articles/2007/08/01/10-things-you-should-know-about-method_missing/

class Thing

 def method_missing(m, *args, &block)

 puts "There's no method called #{m} here -- please try again."

 puts "parameters = #{args.inspect}"

 end

end

>> t = Thing.new
>> t.anything("ddd",3)

There's no method called anything here -- please try again.parameters =
["ddd", 3]=> nil

Ruby Language • Blazing Cloud! page 22 of 22!

Characters that need to be escaped

. | () [] { } + \ ^ $ * ?

with a backward slash (\).

http://www.thirdbit.net/articles/2007/08/01/10-things-you-should-know-about-method_missing/
http://www.thirdbit.net/articles/2007/08/01/10-things-you-should-know-about-method_missing/

