
BlackBerry Browser
Version 4.2

Content Developer Guide

BlackBerry Browser Version 4.2 Content Developer Guide

Last modified: 10 April 2007

Document number: 10635058

At the time of publication, this documentation complies with BlackBerry Device Software Version 4.2.

©2007 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related marks, images, and symbols are the
exclusive properties of Research In Motion Limited. RIM, Research In Motion, BlackBerry, “Always On, Always Connected” and the “envelope
in motion” symbol are registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.

IBM, Lotus, Domino, and Lotus Notes are trademarks of IBM in the United States. Microsoft is a registered trademark of Microsoft Corporation
in the United States and/or other countries. Microsoft and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Adobe and Photoshop are registered trademarks of Adobe Systems Incorporated in
the United States, and/or other countries. Java and all trademarks and logos that contain Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. Mobitex is either a registered trademark or trademark of Telefonaktiebolaget LM
Ericsson Corporation. All other brands, product names, company names, trademarks and service marks are the properties of their respective
owners.

The BlackBerry device and/or associated software are protected by copyright, international treaties, and various patents, including one or
more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470; 6,073,318; D445,428; D433,460; D416,256. Other patents
are registered or pending in various countries around the world. Visit www.rim.com/patents for a list of RIM [as hereinafter defined] patents.

This document is provided “as is” and Research In Motion Limited and its affiliated companies (“RIM”) assume no responsibility for any
typographical, technical, or other inaccuracies in this document. In order to protect RIM proprietary and confidential information and/or trade
secrets, this document may describe some aspects of RIM technology in generalized terms. RIM reserves the right to periodically change
information that is contained in this document; however, RIM makes no commitment to provide any such changes, updates, enhancements, or
other additions to this document to you in a timely manner or at all. RIM MAKES NO REPRESENTATIONS, WARRANTIES, CONDITIONS, OR
COVENANTS, EITHER EXPRESS OR IMPLIED (INCLUDING WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTIES OR
CONDITIONS OF FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, MERCHANTABILITY, DURABILITY, TITLE, OR RELATED TO
THE PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE REFERENCED HEREIN OR PERFORMANCE OF ANY SERVICES
REFERENCED HEREIN). IN CONNECTION WITH YOUR USE OF THIS DOCUMENTATION, NEITHER RIM NOR ITS RESPECTIVE DIRECTORS,
OFFICERS, EMPLOYEES, OR CONSULTANTS SHALL BE LIABLE TO YOU FOR ANY DAMAGES WHATSOEVER BE THEY DIRECT, ECONOMIC,
COMMERCIAL, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY, OR INDIRECT DAMAGES, EVEN IF RIM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIMITATION, LOSS OF BUSINESS REVENUE OR EARNINGS, LOST DATA,
DAMAGES CAUSED BY DELAYS, LOST PROFITS, OR A FAILURE TO REALIZE EXPECTED SAVINGS.

This document might contain references to third-party sources of information, hardware or software, products or services and/or third-party
web sites (collectively the “Third-Party Information”). RIM does not control, and is not responsible for, any Third-Party Information, including,
without limitation the content, accuracy, copyright compliance, compatibility, performance, trustworthiness, legality, decency, links, or any
other aspect of Third-Party Information. The inclusion of Third-Party Information in this document does not imply endorsement by RIM of the
Third-Party Information or the third-party in any way. Installation and use of Third-Party Information with RIM's products and services may
require one or more patent, trademark, or copyright licenses in order to avoid infringement of the intellectual property rights of others. Any
dealings with Third-Party Information, including, without limitation, compliance with applicable licenses and terms and conditions, are solely
between you and the third-party. You are solely responsible for determining whether such third-party licenses are required and are
responsible for acquiring any such licenses relating to Third-Party Information. To the extent that such intellectual property licenses may be
required, RIM expressly recommends that you do not install or use Third-Party Information until all such applicable licenses have been
acquired by you or on your behalf. Your use of Third-Party Information shall be governed by and subject to you agreeing to the terms of the
Third-Party Information licenses. Any Third-Party Information that is provided with RIM's products and services is provided “as is”. RIM makes
no representation, warranty or guarantee whatsoever in relation to the Third-Party Information and RIM assumes no liability whatsoever in
relation to the Third-Party Information even if RIM has been advised of the possibility of such damages or can anticipate such damages.

http://www.rim.com/patents

Research In Motion Limited Research In Motion Europe
295 Phillip Street Centrum House, 36 Station Road
Waterloo, ON N2L 3W8 Egham, Surrey TW20 9LF
Canada United Kingdom

Published in Canada

Contents
1 Getting started with the BlackBerry Browser ..9

Using the BlackBerry Browser ... 9
Browser configurations ... 9

BlackBerry Browser configuration ...11
Internet Browser configuration ..11
WAP Browser configuration ... 12

Browser feature support ..14
Browser content support .. 17

Managing multipart content ...20
Determining which markup languages are accepted ...20
Image conversion ..20

2 Browser interface and features ...23
Browser screen ... 23

Browser menus .. 23
WML <do> elements ... 24
Links .. 24
Option lists .. 25

Browser features .. 25
History .. 25
Cookies ... 25
Cache ..26
Bookmarks ...26

3 Designing wireless web content for the BlackBerry Browser ..29
Creating effective content for the BlackBerry Browser ...29

Follow basic web design principles ..29
Organize content effectively ..29
Select the most appropriate markup language ...30
Consider BlackBerry device screen sizes ...31
Encourage text entry ...31
Minimize download time ..31
Improve rendering time ..31

Creating effective images ..31

Defining queues for offline form submission ... 33
Create an HTTP header property file ... 34
Add queuing parameters directly to the web page ... 34

Making requests for content only when content has changed .. 35
Delivering device-specific content ... 35

Write a browser detection script ..36
Send device-appropriate images ... 38

4 Creating XHTML pages ... 41
Using XHTML-MP ...41

Creating XHTML-MP–compliant sites ...41
Creating an XHTML-MP page .. 43
Code sample: Creating an XHTML-MP web page ..49

5 Creating WML pages ...55
Using WML ..55

WML design tips ..55
Creating a WML page .. 57
Code sample: Creating a WML web page ...62

6 Creating browser push applications ..67
Push applications ...67

BlackBerry Browser configuration push support ...67
WAP Browser configuration push support .. 70

The BlackBerry push process ... 71
Defining push attributes .. 71

BlackBerry MDS Connection Service push attributes .. 71
PAP push HTTP header .. 78
Browser push HTTP headers ... 78

RIM push service implementation ...79
Writing a RIM push service application ..79
Code sample: Creating a browser push application using the RIM push service
implementation ..81

PAP push service implementation ...85
Writing a PAP push service application ..85
Code sample: Creating a browser push application using the PAP push service
implementation ...90

7 Testing web pages .. 99
Using the simulators .. 99

A XHTML language reference ..101
XHTML-MP reference .. 101

Structural elements ... 101
Text and text formatting elements .. 102
Link elements .. 105
List elements ... 106
Basic form elements ..107
Basic table elements .. 108
Image elements .. 109
Object elements ... 110
Meta information ... 110
Script references ... 111

WAP CSS reference ... 112
Element and CSS property matrix .. 120

B WML language reference ... 123
WML reference ...123

Structure elements ..123
Text and text formatting elements ...124
Link elements ...125
Table elements .. 126
Image elements .. 126
Event elements ...127
Task elements ...128
Input elements .. 129
Variable elements ... 130

C JavaScript language reference ... 133
Using JavaScript ..133
Supported JavaScript objects ..133

BlackBerry ...134
BlackBerry Location ..135
Navigator ..138
Document ...142
Form .. 149

Screen ... 156
Window ... 158
Window History ..170

D WMLScript language reference ... 173
Using WMLScript ..173
WMLScript libraries ...174

Lang ...174
Dialogs ..178
String .. 179
URL ... 185
Browser .. 190

E Scripting Basics .. 193
Reserved words .. 193
Statements .. 194
Operators and expressions ... 196

1

Getting started with the BlackBerry Browser

Using the BlackBerry Browser
The BlackBerry® Browser is designed to let users access and navigate web pages over a wireless connection just
as they would using a desktop browser. For content developers, however, wireless browsing poses a number of
additional challenges that are not present when designing content for a traditional desktop environment. Some
notable differences include:

• Display size: The display sizes of the different BlackBerry devices, while not as small as typical wireless
devices, are still much smaller than a desktop browser.

• Memory: BlackBerry devices have more stringent memory restrictions than desktop computers, which
impacts the amount of data they can store.

• Network: Wireless networks have considerably slower data transfer rates than standard LAN networks. Most
wireless browsers access the Internet through a Wireless Application Protocol (WAP) gateway, which can have
size and content limitations.

Research In Motion (RIM) has designed two gateways to mitigate the impact of the wireless network by
supporting a wider range of content and optimizing it to reduce content sizes and decrease transmission and
rendering times:

• BlackBerry MDS™ Connection Service, part of the BlackBerry® Enterprise Solution

• BlackBerry® Internet Service Browsing, part of the BlackBerry Internet Service retail offering

This guide provides an overview of the technical aspects of the BlackBerry Browser and outlines design
considerations for different browser configurations.

Browser configurations
BlackBerry devices can provide up to three browser configurations. Which configurations are provisioned on a
Blackberry device depends in part on how that device connects to a wireless network:

• BlackBerry Browser: connects to the wireless network using the BlackBerry MDS Connection Service
component of the BlackBerry® Enterprise Server as its gateway

Using the BlackBerry Browser
Browser configurations
Browser feature support
Browser content support

Note: A different browser configuration is available for each of these gateways. See “Browser configurations” on page 9 for more
information.

BlackBerry Browser Version 4.2 Content Developer Guide
• Internet Browser: connects to the wireless network using the BlackBerry Internet Service as its gateway

• WAP Browser: connects to the wireless network using a WAP gateway

Each browser configuration represents a different setup of the same browser application. The following table
summarizes the characteristics of each configuration:

As of BlackBerry Device Software Version 4.2, only one icon for the browser appears on the Home screen. In the
event that more than one browser configuration exists on a BlackBerry device, the device users can define the
default browser configuration (and, therefore, the default network gateway) that the browser uses.

Users can select the configuration that is optimal for the type of content that they are viewing. For example, users
might use the WAP Browser to browse standard WML content on the Internet and use the BlackBerry Browser to
access a corporate intranet.

The browser saves bookmarks based on the browser configuration used to view the sites. When the user opends a
bookmarked site, the browser automatically uses the associated browser configuration.

Corporate system administrators can set an IT policy on the BlackBerry Enterprise Server to specify the default
configuration that the browser uses for URL links in applications other than the browser, such as in email
messages or memos. Users can also change the default browser configuration. See the on-device help for more
information about changing the default browser configuration.

Configuration Protocol Network gateway Service books Features

BlackBerry
Browser

HTTP/IP
Proxy Protocol
(IPPP)

BlackBerry MDS Connection
Service

• MDS Transport

• MDS Browser
Configuration

• HTTP over SSL/TLS (HTTPS), including
secure access to corporate intranets,
supports push applications

• reads the contents of the browser cache,
reduces amount of content sent over the
wireless network

• content is optimized for wireless
transmission and the rendering
capabilities of the device before it is
sent to the browser

Internet Browser HTTP/IP
Proxy Protocol
(IPPP)

BlackBerry Internet Service • Internet Transport

• Internet Browser
Configuration

• HTTP over SSL/TLS (HTTPS)

• HTTP gateway for network-aware
Java™ applications

• reads the contents of the browser cache,
reduces amount of content sent over the
wireless network

• content is optimized for wireless
transmission and the rendering
capabilities of the device before it is
sent to the browser

WAP Browser WAP 1.2.2 &
WAP 2.0

WAP-compliant gateway
without proprietary Wireless
Markup Language (WML)
extensions (must support WAP
Transport Protocol-level (WTP)
segmentation and reassembly)

• WAP Transport

• WAP Browser
Configuration

• Wireless Transport Layer Security
(WTLS)

• Wireless Session Protocol (WSP) header
caching
10

1: Getting started with the BlackBerry Browser
BlackBerry Browser configuration

BlackBerry Browser configuration: Architecture
The BlackBerry Browser is designed to provide corporate customers with secure access to corporate intranets, as
well as access to the Internet, using the BlackBerry MDS Connection Service of the BlackBerry Enterprise Server.
The BlackBerry Enterprise Server exists on the corporate network.

BlackBerry Browser configuration connection to the network

The BlackBerry Browser communicates over the wireless network using HTTP over the RIM IPPP.

BlackBerry Browser configuration: Security
Communication between the BlackBerry device and the BlackBerry Enterprise Server is encrypted with Triple
Data Encryption Standard (Triple DES).

The BlackBerry Browser configuration supports HTTPS in one of two modes:

• end-to-end mode: HTTP communication is encrypted using SSL or TLS for the entire connection between the
BlackBerry device and the originating content server. Communication over the wireless network between the
BlackBerry device and the BlackBerry Enterprise Server is also Triple DES-encrypted.

• proxy mode: The BlackBerry Enterprise Server performs SSL handshaking and sets up the SSL connection on
behalf of the device. Communication over the wireless network between the BlackBerry device and the
BlackBerry Enterprise Server is not encrypted using SSL, but it is still Triple DES-encrypted. Communication
over the Internet between the BlackBerry Enterprise Server and the content server is encrypted using SSL or
TLS.

Internet Browser configuration

Internet Browser configuration: Architecture
The Internet Browser uses the BlackBerry Internet Service as its gateway to the Internet. The BlackBerry Internet
Service is a component that exists within the BlackBerry Infrastructure. It contains components that optimize web
content for wireless browsing and transcode content types into appropriate formats for display on the device.

Because the BlackBerry Internet Service does not require a BlackBerry Enterprise Server, which is typically exists
behind a corporate firewall, it can be made available to non-corporate clients through their BlackBerry service
providers.

Note: To support end-to-end SSL on the BlackBerry device, users must install the optional TLS package. This package is
available in BlackBerry® Desktop Manager Version 3.6.1 or later.

BlackBerry
Device

Wireless
Network

BlackBerry
Enterprise Server

Firewall Internet

BlackBerry MDS

Connection Service

Content
Servers

Corporate

Intranet
11

BlackBerry Browser Version 4.2 Content Developer Guide
Internet Browser configuration connection to the network

The Internet Browser communicates over the wireless network using HTTP over the RIM IPPP. Because the RIM
IPPP was designed specifically for the BlackBerry Infrastructure, and because the content is preprocessed and
optimized for wireless transmission and display on a BlackBerry device, delivery of HTML is both faster and more
efficient than HTTP over WAP in most current implementations.

Internet Browser configuration: Security
Because the Internet Browser is intended for use by prosumers instead of corporate customers, it does not support
Triple DES encryption and is not designed to access intranets that are protected by firewalls; however, the
Internet Browser can access secure sites using HTTPS and supports SSL encryption.

The Internet Browser configuration supports HTTPS in end-to-end mode only; that is, HTTP communication is
encrypted using SSL or TLS for the entire connection between the device and the originating content server.

WAP Browser configuration

WAP Browser configuration: Architecture
The WAP Browser connects to the network using a WAP gateway. WAP gateways must support WTP-level
segmentation and reassembly. Proprietary WAP extensions are not supported.1

WAP Browser configuration connection to the network

The WAP Browser is designed to support WAP 2.0, with the following exceptions:

• no WAP 2.0 provisioning support

• no iCard® support

• no iCalendar® support

Note: To support end-to-end SSL on the device, users must install the optional TLS package. This package is available in BlackBerry
Desktop Manager Version 3.6.1 or later.

1. Research In Motion does not in any way endorse or guarantee the security, compatibility, performance, or trustworthiness of any WAP gateway, and shall have
no liability to you or any third party for issues arising from such WAP gateway.

BlackBerry
Device

Wireless
Network

Content
Servers

Internet BlackBerry
Internet Solution

BlackBerry Internet

Connection Service

BlackBerry
Device

Wireless
Network

WAP gateway
(Service Provider Network

Operations Center)

Content
Servers

Internet
12

1: Getting started with the BlackBerry Browser
• limited Wireless Telephony Application Interface (WTAI) support: the browser supports only the Uniform
Resource Identifier (URI) forms of the public WTAI functions

• limited WAP cascading style sheet (CSS) support

The WAP Browser configuration supports the following protocols:

• WAP 1.2.1: The WAP Browser caches WSP headers to decrease the transmission time of requests; it sends
common HTTP headers to the WAP gateway when it sets up the WAP connection, and then sends only
additional or changed headers in each request. In subsequent requests, the WAP Browser sends only headers
that are specific to the request or that contain values that are different from the initial values.

See the specification WAP-203-WSP-20000504-a at http://www.wapforum.org for more information.

• WAP 2.0: The WAP Browser sends HTTP over Wireless-Profiled TCP (wTCP). The browser sends the HTTP
request to a WAP 2.0 proxy, which then forwards it to the server.

The WAP gateway determines which content types the browser can access. For example, some WAP gateways
might convert HTML content into a series of WML pages, while some might impose a limit on the size of content
that the WAP Browser can request.

WAP Browser configuration: Security
The WAP Browser is designed to use WTLS to access secure WAP services, including WTLS Class 1 (encryption only,
no authentication) and WTLS Class 2 (encryption and server authentication). The WAP Browser configuration
supports both DES (40- and 56-bit) and RC5 encryption (64-, 128- and 168-bit). The WAP Browser configuration
does not support the WMLScriptCrypto library. Communication over the wireless network between the device and
the WAP gateway is encrypted in WTLS. Communication over the Internet between the WAP gateway and the
origin web server is encrypted in SSL or TLS.

The WAP gateway decrypts data that it receives from either the device or the originating server and
re-encrypts it using the appropriate protocol. During its conversion from one encrypted format to another, data is
briefly not encrypted at the service provider location.

To support WTLS on the device, users must install the optional WTLS Security Package for the browser. This
package is available for installation in the BlackBerry Desktop Software.
13

BlackBerry Browser Version 4.2 Content Developer Guide
Browser feature support
Feature Browser configuration Description Supported as of

BlackBerry Internet WAP

Content transfer and rendering optimization

Browser Session
Management

a a When a user starts a browser session, the Browser Session
Management protocol immediately sends information about
the contents of the browser’s cache to the network gateway.

Using this knowledge of the cache contents, the network
gateway can then omit the transfer of any page component
(such as an image, style sheet, or JavaScript™ file) that
already exists in the cache (and is still valid). The browser
revalidates expired components, wherever possible.

v.4.1

Content filtering a a The network gateway preprocesses HTML or Extensible
HTML (XHTML) content to remove unsupported tags for
faster display on the BlackBerry device, converts data to a
tokenized format, and compresses the data for efficient
delivery over the wireless network.

It then sends processed content to the device as soon as it is
available.

v.3.7

Page rendering a a The network gateway retrieves images from the content
server while it preprocesses the HTML or XHTML content. It
then includes the images with the pages that it sends to the
device for reduced wireless network traffic and faster
browsing.

v.3.7

Image optimization a a The network gateway converts .jpeg or .gif images to .png
images and scales them to fit the screen dimensions. It also
reduces the image color depth to suit the capabilities of the
user’s BlackBerry device.

v.3.6

Mobile-friendly browsing

Automatic synchronization
of bookmarked content

a a a Users can set the browser to automatically update
bookmarked content at a specified interval. When the
specified interval is reached, the browser will connect to the
content server and download the most recent content, if it
has been updated since the last time the content was
retrieved. If the BlackBerry device is out of wireless coverage
when the browser attempts to retrieve the content, the
browser will wait until the device is back in coverage, then
attempt to retrieve the content again. Content is sent
directly to the browser cache.

When new content has been cached for a bookmark, the next
time the user enters the browser, the bookmark appears in
bold and italics.

v.4.2

Offline form submission a a a When the device is outside of a wireless coverage area, users
can fill out an HTML form and have the browser queue it for
submission to the server. The browser submits the form as
soon as the device is in a wireless coverage area.

v.3.8
14

1: Getting started with the BlackBerry Browser
Background downloading a a a Users can request a page and download it directly to the
message list. They can continue to view the current page
while the requested page is downloaded in the background.
After the page has been completely downloaded, users can
go to the message list and select the requested page to view
it.

v.3.2

Navigation

Page overview a a a Users can zoom out to provide an overview of the entire page
so that they can quickly scroll to the area of the page that
they want to view.

This allows users to skip over ads or top of page navigation
links, instead of using the trackwheel or trackball navigation
to scroll over each link before the browser displays the core
content.

Note: This feature is not supported for WML content.

v.4.2

Service provider
customizable bookmarks

a a a As with desktop browsers, service providers can provision the
browser with custom bookmarks.

v.3.8

One-click support for links
and image maps

a a a To follow a link, users click and hold the trackwheel or
trackball.

v.3.7

Trackwheel or trackball
navigation

a a a Using the trackwheel or trackball, users can scroll from link
to link. Scrolling up or down moves to the next or previous
link on the same line, before moving to the next line.

When images are placed in <a> or <anchor> tags, users can
select the image to follow the link or to perform the
associated action.

v.3.7

Soft keys for WML <do>
items

a a a In addition to being added to the browser menu, WML <do>
items are displayed as “soft keys” in a non-scrolling region at
the bottom of the browser screen.

v.3.6.1

Security

SSL/TLS encryption a a The BlackBerry and Internet Browser configurations
support HTTPS in the following way:

• BlackBerry Browser: The BlackBerry Browser
configuration supports HTTPS in one of two modes:

• end-to-end mode (when the TLS package exists on
the BlackBerry device)

• proxy mode

See "BlackBerry Browser configuration: Security" on
page 11 for more information.

• Internet Browser: When the TLS package exists on the
BlackBerry device, the Internet Browser configuration
supports HTTPS in end-to-end mode.

See “BlackBerry Browser configuration: Security” on
page 11 for more information.

v.3.6

Feature Browser configuration Description Supported as of

BlackBerry Internet WAP
15

BlackBerry Browser Version 4.2 Content Developer Guide
WTLS encryption a The WAP Browser configuration is designed to support WTLS
Class 1 and Class 2. Both DES (40- and 56-bit) and RC5
encryption (64-, 128- and 168-bit) are supported.

See “WAP Browser configuration: Security” on page 13 for
more information.

v.3.3

Web access restriction a To restrict wireless web access, system administrators can
turn the BlackBerry MDS Connection Service on or off for
specific users or user groups. System administrators can also
set specific policies to control which corporate servers each
user can access and which servers can initiate push
connections to the BlackBerry MDS Connection Service.

v.3.2

Triple DES encryption a Browser content is encrypted between the BlackBerry
Enterprise Server and the device using Triple DES encryption,
the same encryption used when sending email messages.

v.3.2

Network authentication a a BlackBerry Browser: The BlackBerry Browser configuration
supports several types of network authentication, including
Basic Authentication, NT LAN Manager (NTLM), and
Kerberos™.

WAP Browser: The WAP Browser configuration supports the
Password Authentication Protocol (PAP), which is used for
authentication against Remote Authentication Dial In User
Service (RADIUS) for Packet Data Protocol (PDP) context
activation on GPRS networks. PDP context activation
enables data transmission between the network and the
device.

v.3.2

WAP Push applications a A WAP Push service record must be provisioned on the device
to push data to the device. WAP Push service records are
usually sent to the device during registration.

v.3.2

Usability

Single browser icon on the
device Home screen

a a a Users specify the default browser configuration.

To use a specific browser configuration for a specific web
site, users can change to the appropriate browser
configuration from the Go To dialog box.

v.4.2

Bookmarks associated with
browser configuration

a a a Bookmarked web sites are stored with an associated browser
configuration. When a bookmark is opened, it automatically
uses the associated browser configuration.

v.4.2

On-device help available a a a A browser Help page is available from the browser menu. v.3.7

Feature Browser configuration Description Supported as of

BlackBerry Internet WAP
16

1: Getting started with the BlackBerry Browser
Browser content support
Content type Description Supported as of

Markup languages (See “Determining which markup languages are accepted” on page 20 for more information.)

WAP CSS
(partial support)

WAP CSS is defined by the WAP Forum. See WAP-239-WCSS-20011026-a at
http://www.wapforum.org for more information.

v.3.8

XHTML Mobile Profile
(XHTML-MP)

This subset of XHTML 1.1 is defined by the WAP Forum. See
WAP-277-XHTMLMP-20011029-a at http://www.openmobilealliance.org for more
information.

v.3.6

HTML HTML is defined in a W3C specification. The browser ignores tags that are not present
in the XHTML-MP subset. Visit http://www.w3.org/TR/html401 for more information
about this specification.

v.3.2.1

Compact HTML (cHTML) This subset of HTML 2.0, HTML 3.2, and HTML 4.0 is as described in a W3C Note (NOTE-
compactHTML-19980209). Visit http://www.w3c.org for more information.

v.3.2.1

WML 1.3 WML is defined by the WAP Forum. See WAP-191-WML-20000219-a at
http://www.wapforum.org for more information.

v.3.2

Images (See “Image conversion” on page 20 for more information about converting images.)

JPEG Only color devices support .jpg images directly. With the BlackBerry Browser and
Internet Browser configurations, the network gateway converts .jpg images for display
on monochrome devices.

v.3.7

GIF The device supports both the GIF87 and GIF89 image formats. The browser supports
animated .gif files.

v.3.2.1

PNG By default, the browser converts .gif images to .png images. The PNG format has a
higher compression ratio and it supports alpha channels.

Java developers can write transcoders to convert other image formats to PNG format.

v.3.2.1

Wireless bitmap (WBMP) The browser supports monochrome WBMP images. See the Wireless Application
Environment Defined Media Type Specification (WAP-237-WAEMT-20010515-a) at
http://www.wapforum.org for more information on wireless bitmaps.

v.3.2

Complex content presentation formats

Framesets The browser supports framesets and frames. The browser renders framesets by stacking
frames vertically on a single page in the order in which the browser encounters them,
using the full width of the device screen and as much vertical space as is required to
contain all the frames. The browser processes one frame at a time, rendering the frame
completely before processing the next frame.

Inline frames, specified using the <iframe> element, are not supported.

v.4.2

Web feeds The browser supports the RSS0.9, RSS1.0, RSS2.0, and ATOM web feed formats.

The browser renders web feed content in a manner similar to the message list; it lists
items by date, with unread items in bold. When the user opens an item to view more
content, the content appears in a new page.

Users can add web feeds to the bookmark list.

v.4.2
17

BlackBerry Browser Version 4.2 Content Developer Guide
Mobile media

Media Engine content The browser supports mobile media in PME and PMB formats. These formats are binary
file formats that are optimized for wireless downloading to wireless devices and can be
read by the Media Engine, a component of the BlackBerry Device Software.

Content developers can author mobile media in several ways:

• using the Plazmic® Composer (available as part of the Plazmic Content Developer’s
Kit) to create .pme or .pmb files. Visit http://www.plazmic.com for more
information.

• creating .svg files then converting them to .pme files using the Plazmic SVG
Transcoding Utility.

Note: The network gateways for the BlackBerry Browser and Internet Browser
configurations also include a transcoder that converts SVG content into PME
format before sending the content to the device.

To view mobile media content on a device, visit http://mobile.blackberry.com.

v.3.7

Audio The browser allows you to download audio files of up to 128 KB in size. It supports the
following audio MIME types:

• audio/adpcm

• audio/mid

• audio/midi

• audio/x-midi

• audio/x-oki-adpcm2

v.3.7

Scripts

JavaScript The browser supports JavaScript 1.3 and earlier, and subsets of JavaScript 1.4 and 1.5.
The browser also supports the ECMA-262 ECMAScript Language Specification.

Note: JavaScript is supported only on BlackBerry devices that are 16MB or greater.

The browser processes JavaScript that runs when the page is first rendered, and
JavaScript that is associated with control actions on the page. The JavaScript support
manages any additional HTML content and additional JavaScript content that the
JavaScript produces, and reads any auxiliary JavaScript support libraries that are
referenced from the page.

System Administrators can turn on JavaScript support using IT policy. Users can turn
on JavaScript support in the BlackBerry Browser Options, accessed from the browser
menu.

Note: The browser does not support style sheets for Dynamic HTML. As a result, any
JavaScript on the page that creates Dynamic HTML effects (for example, pop-up
menus) runs but has no visual effect, and might not be fully functional. The browser
supports JavaScript for pages whose HTML content is partially or fully generated by
JavaScript, and for data processing operations coded in JavaScript, such as input field
validation in forms and processing “Login” buttons on various sites.

v.3.8

WML scripts The browser supports WML Script 1.2.1. WML Script lets you manipulate data values
between WML decks programmatically. Common operations that are performed in WML
Script include input validation, input aggregation, and conditional form processing.

See WML Script Specification (WAP-193-WMLS-20001025-a) and WML Script
Standard Libraries Specification (WAP-194-WMLSL-20000925-a) at http://
www.wapforum.org for more information.

v.3.2.1

Content type Description Supported as of
18

1: Getting started with the BlackBerry Browser
Application pushes and downloads

Wireless application downloads The browser supports the MIDP 2.0 wireless provisioning standard for wireless
application downloads. When a user downloads an application to the device, the
application installs automaticallu and the application icon appears on the Home
screen.

v.3.6

BlackBerry MDS Connection
Service reliable push

With BlackBerry MDS Connection Service reliable push, the browser sends
confirmation messages from the device for successful application downloads and
pushes.

v.3.8

Push applications Organizations can write push applications that send new web content and alerts to
specific users automatically. With push applications, information can be delivered to
the device as it becomes available; users do not have to request or download the data.

For example, instead of relying on users to find intranet content, an organization can
transmit data proactively. Users do not have to connect to corporate servers to check
for new content; instead, an alert can be sent to users when new content is available.

Both the BlackBerry and WAP Browser configurations support push applications, but
they support them in different ways. See “Creating browser push applications” on page
67 for more information. The Internet Browser configuration does not support push
applications.

v.3.2

Customization

APIs for third-party applications Two APIs assist with third-party integrations with the browser:

• BrowserField API: Third-party applications can use the BrowserField API to embed
an HTML, WML, or PME field anywhere within their application.

• HTTP Filters API: The HTTP Filters API enables code on the device (usually third-
party application code) to register itself with the browser as the provider of content
from a specified URL. Third-party developers can then focus on content generation
and application logic by creating code that uses the browser as its UI engine.

v.3.8

Content type Description Supported as of
19

BlackBerry Browser Version 4.2 Content Developer Guide
Managing multipart content
One of the factors that limits the speed with which the browser can download and render content is the
prevalence of “composite” web pages (pages composed of a main WML or HTML page and one or more related
auxiliary files, such as style sheets, JavaScript files, or image files). Because each auxiliary file requires that the
browser submit a separate HTTP request, rendering times can be extended considerably.

To improve efficiency, content developers are increasingly posting all the necessary parts of a composite web
page in a single bundle, letting the browser download all required content with a single request. The Content-
Type header in the response identifies the content as a multipart bundle.

The browser supports the following Content-Type values:

• multipart/mixed: Denotes a collection of independent files. The first component of the bundle is assumed to
be the principal file, for example, the WML or HTML page. Subsequent parts are assumed to be the auxiliary
files, such as images, JavaScript files, or style sheets.

• multipart/related: Denotes compound documents, where the document is built from the pieces contained in
the bundle. The browser cannot display the content without all the aggregate components.

• multipart/alternative: Denotes a collection of alternative versions of the same content. The browser searches
until it finds a component with content that it can render.

Determining which markup languages are accepted
Service providers and system administrators can specify whether the browser accepts WML or HTML content, or
both, based on the type of content, the browser configuration, and the gateway behavior. Device users can change
this value later. For example, to prevent unwanted content conversions, system administrators might want the
BlackBerry Browser and Internet Browser configurations to indicate support for both HTML and WML. In other
cases, service providers might want the WAP Browser configuration to indicate preference for WML content so
that web sites with both WML and HTML content send the WML version and minimize bandwidth usage.

In “HTML only” mode, if a requested URL returns WML content, the web server or gateway returns an HTTP
response of 406 (“Not Acceptable”). The browser then adds the WML capability to the HTTP_ACCEPT header and
requests the URL again.

Image conversion

To provide the information that the gateway needs to convert images so that they can be rendered by the browser,
the browser includes the following HTTP headers with every request:

• Transcode Content (X-RIM-transcode-content): This header enables image optimization processing by
indicating which image types should be converted.

Note: The image conversion feature requires one of:

• BlackBerry Enterprise Server for Microsoft® Exchange Version 3.6 or later

• BlackBerry Enterprise Server for IBM® Lotus® Domino® Version 2.2 or later

• BlackBerry Enterprise Server for Novell® GroupWise® Version 4.0 or later

• BlackBerry Internet Service Browsing
20

1: Getting started with the BlackBerry Browser
• User Agent Profile (Profile): This header contains a URL that includes the following information:

• location of the User Agent Profile (UAProf) documents on the Internet

• device model number

• BlackBerry Device Software version

See the User Agent Profiling Specification (WAP-248-UAProf-20011020-a) at
http://www.wapforum.org for more information.

Image conversion for the BlackBerry Browser and Internet Browser configurations
For both the BlackBerry Browser and Internet Browser configurations, back-end services read the information in
the User Agent Profile document to determine device capabilities, such as screen size, color depth, and accepted
image and content types (for example, only color devices can display .jpg images directly).

With this information, the network gateway can return device-appropriate content to the browser. The
HTTPcontenttranscoderslist.property file stores image and content conversion information. By default, the
BlackBerry MDS Data Optimization Service converts JPEG format images into PNG format for display on
monochrome devices. The BlackBerry MDS Data Optimization Service converts images in BMP and GIF formats to
PNG format for all devices.

Image conversion by the WAP gateway
With the WAP Browser configuration, images are typically not converted. Most WAP gateways pass along all
images to the browser, provided the ACCEPT header lists the appropriate image format and the image is within
the allowable size; however, some WAP gateways might restrict the image types or impose size restrictions that
prevent larger image files from being retrieved.

Image processing
The browser loads images differently depending on the gateway that is used.

When processing images for display on the device, the following techniques apply:

• Horizontal scaling: Images that exceed the screen dimensions are scaled to be no wider than the screen
content area. To maintain the aspect ratio, images are scaled by the same factor in both the horizontal and

Gateway Image processing

• BlackBerry Enterprise Server for Microsoft
Exchange Version 3.6 or later

• BlackBerry Enterprise Server for IBM Lotus
Domino Version 2.2 or later

• BlackBerry Enterprise Server for Novell
Groupwise Version 4.0 or later

• BlackBerry Internet Service

The network gateway retrieves images while it processes the HTML content, and
includes the images when it sends the HTML or XHTML content to the device. Images
appear immediately.

• WAP gateway

• BlackBerry Enterprise Server for Microsoft
Exchange Version 3.5

The browser first displays image placeholders, with the alternate text of each image (if
alternate text is provided). In the background, the browser loads each image separately
and updates the page as each image becomes available. The browser retrieves images
from the local cache, if possible.
21

BlackBerry Browser Version 4.2 Content Developer Guide
vertical dimensions. The screen content area is the screen width minus 5 pixels. The vertical scroll bar that
displays at the right is 5 pixels wide. Users can press the Alt key and roll the trackwheel to scroll horizontally.

• Vertical scaling: Images that are more than twice the screen height are scaled to twice the screen height. To
maintain the aspect ratio, images are scaled by the same factor in the horizontal and vertical dimensions.
Users can roll the trackwheel to scroll vertically.

• Size limitation: If a monochrome image is more than 8192 bytes after scaling, the image is discarded. If the
image is part of a link, the browser displays the alternate text for the image.

• Color: On a monochrome device, color images are dithered into a monochrome image. On a color device, the
image color depth is reduced to accommodate the number of colors that the device supports.

• Vertical alignment: The vertical alignment in tags is ignored.

The network gateway for the BlackBerry and Internet Browser configurations scale and dither images for the
BlackBerry device. With the WAP Browser configuration, the device performs scaling and dithering as necessary.

Note: In BlackBerry Device Software Version 3.6 or earlier, the browser displays images in a vertical area that is separate from the
content before and after the image. Images do not appear inline with surrounding text; they are aligned horizontally according to the
ALIGN attribute (ALIGN=LEFT or ALIGN=RIGHT).
22

2

Browser interface and features

Browser screen
By default, the browser is designed to display a non-scrolling title bar at the top of each page that displays the
following items:

• page title

• unread messages

• pending service books

• connection information

• security settings

• network signal strength

When the browser requests or loads pages, a progress bar appears at the bottom of the screen.

On WML pages, <do> elements appear both as soft keys in the non-scrolling section at the bottom of the page and
as menu items on the browser menu. See “Browser menus” on page 23 for more information.

Links to web pages, phone numbers, and email addresses are underlined with a dotted line. See “Links” on page
24 for more information.

When a web page does not fit on one screen, a vertical scroll bar appears on the right side of the screen.

Browser menus
The browser menu provides access to most tasks that users perform when they browse. The menu provides the
standard BlackBerry system menu items, such as Hide Menu and Close, a Help item, and appropriate context
menu items, such as Select and Find.

The browser provides standard menu items for navigation, including Home, Back, Forward, History, and Refresh.
The Go To menu item lets users type any URL.

Specific menu items appear depending on the page and the item that is selected.

Browser screen
Browser features

BlackBerry Browser Version 4.2 Content Developer Guide
WML <do> elements
The browser displays WML <do> elements in the following ways:

• as soft keys in the non-scrolling area at the bottom of the screen. A maximum of two soft keys can be
displayed on the screen.

• as items on the browser menu. All <do> elements included in the current WML card are displayed in the
browser menu.

Soft keys provide a familiar way to navigate pages for users who have used WAP browsers on other mobile devices,
such as cellular phones. To select soft keys, users scroll to the soft key and click the trackwheel.

Links
Links are underlined with a dotted line. In BlackBerry Device Software Version 3.7 or later, the browser provides
one-click navigation. To follow a selected link, users click and hold the trackwheel or trackball, or press the Enter
key.

Link Type Description

Web page links On a web page, users scroll to links by rolling the trackwheel or trackball. Scrolling up or down moves to the next or
previous link on the same line, before moving to the next line.

Image links When images are placed in <a> or <anchor> tags, users can select the image to follow the link or to perform the
associated action. If the size of the image exceeds the screen dimensions, users can click the Full Image menu item to
load the image on a new page. When the browser encounters a full image request, the image is retrieved in its original,
unscaled form and is transmitted to the browser. The browser renders the image from the top left. Vertical and
horizontal scroll bars are available. To scroll vertically, users roll the trackwheel or trackball. To scroll horizontally, users
press the Alt key and rolls the trackwheel or trackball.

Image maps The browser supports image maps. When images contain the image <map> tag, users can select links on portions of an
image. A dotted line around the hot spot denotes a link. To select the link, users click and hold the trackwheel or
trackball, or press the Enter key.

Phone links The browser supports the following types of phone links:

• WTAI) Make Call links (URI form): Call office

• phone links in i-mode format: Call office

• Direct Connect links on iDEN® networks: Call office

• Computer Telephone Integration (CTI): Call office

When users click a phone link, the phone opens and a dialog box appears. Users select whether to make the call or not.

Email links The browser supports mailto: links. For example:

Email Kate

When users click an email link, the Compose screen appears with a new message.
24

2: Browser interface and features
Option lists
Option lists are displayed as radio buttons (for single-selection lists) or check boxes (for multiple-selection lists).
To select an option in a list, users press the Space key or click the Select Option menu item.

In WML, if a single-selection list does not have an onpick action defined for one of its options, when the user
selects an option, the browser runs either the first <do> action with a type of accept, or, if none has the type
accept, the first <do> action listed.

In HTML and XHTML, options that are grouped in a SELECT tag appear in a drop-down list. To select an option,
users click the drop-down menu and click Change Option.

If a size is defined, the selection list appears in a vertical list instead of a drop-down list.

Browser features

History
The browser maintains a navigation history of up to 20 items. When a user navigates to a page, the browser adds
the URL of that page to the navigation history.

When the history list reaches 20 items, the browser replaces the earliest pages with the new URLs. If memory on
the device becomes low, the browser removes history items to free memory.

When the user navigates to a previous page and selects a new link from that page, the browser removes any URLs
after that point in the history. The URL of the newly selected page becomes the next item in the history sequence.
For example, if a user navigates from a music page to a news page, the history displays both pages. If the user
then navigates back to the music page and selects a genre of music, the history displays the music page and the
genre page; the news page is no longer listed.

Cookies
The browser stores cookies on its own behalf. The browser supports standard cookies based on the RFC 2109
HTTP State Management Mechanism, as well as the Netscape® format for expiry dates (EXPIRES=Weekday, DD-
Month-YY HH:MM:SS GMT). The browser maintains cookies when the device is turned off.

If configured to do so, the BlackBerry MDS Connection Service can store cookies on behalf of the BlackBerry
Browser. This service supports cookies based on the RFC 2965 HTTP State Management Mechanism, which
supports the HTTP state management header Set-Cookie-2. See the BlackBerry Enterprise Server
Administration Guide for more information.

Note: If a user visits a WML page by some manner other than a predefined link (for example, not a bookmark or the Go To dialog box),
or if that page has a newcontext attribute defined, the browser automatically clears the history before displaying the new URL. This
behavior is required to conform to WML security specifications.
25

BlackBerry Browser Version 4.2 Content Developer Guide
Cache
The browser maintains three caches—a content cache, a channel cache, and a cookie cache—each of which stores
a different type of information.

Whenever possible, the browser loads requested content from the local cache. Users can clear the content,
channel, and cookie caches on the device to free remaining memory and refresh any visited web pages.

The browser respects cache control directives that web servers send in response headers, such as Expires, Max-
Age, and Cache-Control. When permitted, the browser retrieves content from the cache based on associated
cache control directives. See the specification WAP-120-UACACH-20010413-a at http://www.wapforum.org for
more information on WAP user agent caching.

On the BlackBerry device, the browser saves the channel and cookie caches in persistent storage, so information
is saved even if the device is reset. The browser clears an item from the cache when it expires. If an item has no
expiry time explicitly set, the browser clears the item from the cache after 29 days.

On devices with 8 MB of memory, the browser clears the content cache when the user closes the browser session.
On devices with 16 MB of memory, the content cache persists. The device clears items from the cache to free
memory when necessary, with expired pages cleared first.

Service providers can set the size of the raw data cache. The system default sizes of the raw data cache for the
various BlackBerry devices are:

• 200 KB for devices with 8 MB of memory

• 500 KB for devices with 16 MB of memory

• 2 MB for devices with more than 16 MB of memory

Users cannot view or change these options.

Bookmarks
The browser provides bookmark support that combines the functionality that is typical of computer-based
browsers with added features that are designed specifically for the wireless environment.

As with desktop browsers, users can add bookmarks for any web site that they visit, and they can create a
hierarchy of folders to organize them. Each browser configuration has its own set of bookmark folders so that
users can organize bookmarks separately, based on which browser configuration is best for the bookmarked site.
Bookmark folders for all browser configurations can be accessed regardless of the browser configuration that the
user is browsing with. Users can move or copy bookmarks between any folder. They can edit the title and URL of
bookmarks as necessary, and they can search for and delete specified bookmarks.

Cache Description

Content This cache includes the raw data cache; it contains all data that is cached as a result of normal browser activity.

Channel This cache contains data that is sent to the device by a channel or cache push.

Cookie This cache contains cookies that are assigned to the browser by visited web pages.

Note: The channel and cookie caches are stored persistently; however, information in the content cache is lost if the device is reset or
the BlackBerry MDS Connection Service is restarted.
26

2: Browser interface and features
During the registration process, service providers can insert a set of customized bookmarks in the browser. These
bookmarks are sent over the wireless network in the browser configuration service record. By default, the
bookmarks are placed in the Bookmarks tree view hierarchy in a new folder called Carrier Bookmarks. The name of
the folder can also be customized.

Frequently used browser pages can also be saved to the Messages screen for quick access.

Bookmarks are useful when users are outside a wireless coverage area. When users add a bookmark, they can
make the bookmark available offline, which means that both the content and URL of the page are saved. Offline
bookmarks are maintained even if the device is reset.

Offline bookmarks for web pages that contain forms also save the current values of form fields, which users can
use as a template for frequently used forms. For example, users can add an offline bookmark for a page that
contains a form. Later, even if users are outside a wireless coverage area, they can load the bookmarked form, fill
out the appropriate fields, and submit the form. Users can then save the browser request to the message list.
When the device returns to a wireless coverage area, the browser sends the request automatically.

Users can back up browser bookmarks using the BlackBerry Desktop Software, so that when they update their
devices with new applications, their bookmarks are retained.
27

BlackBerry Browser Version 4.2 Content Developer Guide
28

3
Designing wireless web content for the
BlackBerry Browser

Creating effective content for the BlackBerry Browser
Many factors (such as the network gateway, the browser configuration, and the BlackBerry device memory, screen
size, and color depth) influence how content renders on the device.

Follow basic web design principles
Many standard principles of web site design apply when you create content for wireless devices. Consider the
following design recommendations when you plan your web site:

• Understand your audience: Determine who will use the site and the primary service that your site will
provide.

• Create an appropriate site hierarchy: Structure your web site based on its purpose, and organize the site to
minimize the time that it takes users to find information or perform tasks.

• Provide useful links: Minimize the number of pages that users must navigate to accomplish their goals and
consider the following guidelines for links:

• Include a link to the home page on each page.

• Whenever possible, include links to other related pages on your site, to minimize backward navigation
using the browser history.

Organize content effectively
Consider the following guidelines when planning your web site:

• Deliver related content on as few pages as possible: Although a page with more content might take a few
seconds longer to download, users do not have to make subsequent requests, and the information is available

Creating effective content for the BlackBerry Browser
Creating effective images
Defining queues for offline form submission
Making requests for content only when content has changed
Delivering device-specific content

BlackBerry Browser Version 4.2 Content Developer Guide
even when users move outside a wireless coverage area. BlackBerry users can use the trackwheel to scroll
through several screens of text easily.

On WML pages, put related cards in the same deck whenever possible so that the document has to be loaded
only once. If the deck contains a relatively large card that many users might not want to view, save the card in
its own deck to minimize download time.

• Add links to related content: If you divide related content into more than one page, make links to related
content easily accessible. Make sure that links to related content are visible in a non-scrolling area of the page
or at the top of the page. For example, in WML, you could add a More menu item (or soft key) to let users
retrieve related content quickly.

Example of a More link and menu item

Select the most appropriate markup language
When you create a new web site, you must decide whether you are going to write the source in HTML, WML, or
SVG. Consider the following advantages and disadvantages of each markup language as you decide.

Markup HTML/XHTML WML SVG

Advantages • HTML can be migrated to XHTML
much more easily than to WML

• XHTML supports greater layout
versatility than WML

• functionality can be extended
considerably using JavaScript

• as of WAP 2.0, XHTML-MP has
become the markup language
supported by the Open Mobile
Alliance and will become the
standard for mobile devices

• most users of wireless web sites are
accustomed to WML

• currently the most widely used
markup language for wireless web
applications

• has a well-maintained DTD and is
well-documented

• functionality can be extended using
WMLScript

• lets content developers add
movement and sound to their
content

• offers dynamic layout and
presentation support

• automatically transcoded to the
.pme file format by the BlackBerry
MDS Data Optimization Service or
the BlackBerry Internet Service

Disadvantages • usually larger than WML content, so
it can take longer to display

• supports only basic page layout;
best suited to very basic sites

• WMLScript is much less robust than
JavaScript

• WML has been deprecated by the
Open Mobile Alliance as of WAP 2.0
in favor of XHTML-MP

• SVG is not supported by the
browser directly; it must be
transcoded to the .pme file format
(either by a data optimization
service provided with the network
gateway, or by the content
developer)

• takes longer to download than
other formats
30

3: Designing wireless web content for the BlackBerry Browser
Consider BlackBerry device screen sizes
Design web pages to use the BlackBerry device screen effectively. BlackBerry devices have larger screens than
many other mobile devices, such as mobile phones. Depending on the device type and selected font size, the
browser can typically display 12 to 18 lines of text with 28 to 35 characters on each line. In contrast, many mobile
phone browsers display 4 to 7 lines of text, with 10 to 15 characters on each line.

Encourage text entry
BlackBerry users can use the keyboard to type text into web forms.

The browser supports both <input type="text"> and <textarea> elements in HTML, and
<input type="text"> in WML. With QWERTY or SureType™ keypads, text entry is considerably easier for
BlackBerry users than for users of mobile phones, and they need not be avoided.

Minimize download time
Download time is affected by three factors: content size, the wireless network, and protocol characteristics. For
example, a 15-KB file can take 30 seconds or more to download through a WAP gateway on a GPRS network.

You can improve download time by reducing the size of web pages. To reduce the size of web pages, avoid
unnecessary content and images. Reduce image file sizes as much as possible.

Improve rendering time
Rendering on the browser does not affect the time it takes to display content as much as the download time does,
but large content can still require several seconds to parse and display.

The BlackBerry MDS Services and the BlackBerry Internet Service will speed up rendering times by processing
HTML content before sending it to the browser. These components filter out unsupported elements and convert
content into a tokenized format that the browser can display efficiently.

Creating effective images
Consider the following guidelines when you include images on your pages:

• Fonts that are saved as images should not be anti-aliased. Anti-aliasing smooths edges by blending the
background and foreground colors. Anti-aliased images do not display optimally on the BlackBerry devices.

• If you resize an image to better fit the smaller screen, when possible, redraw the image. Scaling down the
image results in blurred edges that display poorly.

• Although the network gateway for the BlackBerry Browser and Internet Browser configurations can dither
color images to monochrome, ideally your images should be saved in monochrome format for display on
monochrome devices. The following example demonstrates examples of the same page rendered on a color
device and a monochrome device. See “Delivering device-specific content” on page 35 for more information
about delivering device-appropriate content.
31

BlackBerry Browser Version 4.2 Content Developer Guide
Effect of dithering on color images

• If it is not possible to provide both a color image and a monochrome image, verify that the image displays
acceptably on both device types.

• Users can specify whether images are loaded or not; therefore, images should not be critical to the
effectiveness and usefulness of your web site.

See “Browser content support” on page 17 for more information about supported image types and image
processing.

Create effective monochrome images
The following examples demonstrate monochrome images that display well on the BlackBerry device, and images
that display poorly. The first pair of images display well because they are monochrome and contain well-defined
edges. The second pair of images display poorly because of feathered edges and blurred colors.

Examples of monochrome images that display well in the browser

Examples of images that display poorly in the browser
32

3: Designing wireless web content for the BlackBerry Browser
To convert an image to monochrome using Adobe® Photoshop®, convert your image to a bitmap using the 50
percent threshold method. You might need to discard any color information by converting the image to grayscale.

The following diagram demonstrates how a gradient appears on the BlackBerry monochrome devices. Gradients
appear adequately on the BlackBerry device screen, but they are less effective on a smaller scale. For example, a
font with feathered edges appears poorly on the device screen.

Examples of grayscale gradients on a BlackBerry monochrome device

Defining queues for offline form submission
If you define form-submission queues, BlackBerry users can complete and submit forms and continue browsing
without waiting for the form to be submitted or worrying about whether they are in a wireless coverage area. Users
can load an HTML form (or a WML page with inputs) in the browser, fill in the values, and then submit the form to
an Offline Queues list. The browser continuously processes any queued forms and submits the forms in the
background.

If the device is outside a wireless coverage area, users can still complete and submit several forms (possibly for
different queues). The browser queues the form requests and submits them when the device is back in coverage.

After forms are submitted, user responses are stored by the browser. Users can open the queue list, and click a
request to view the response.

The following HTTP headers allow you to create a form queue:

Parameter Required? Description

x-rim-queue-id Yes Specifies the Offline Form Queue to which any GET or POST requests from form submissions on this
page should go. The value may be any text string.

x-rim-next-target No Specifies the next page to load after sending any GET or POST requests resulting from this page to the
Offline Form Queue. The value may be any valid URL.

x-rim-request-title No Specifies the label used to identify this request in the Queue view page. The value may be any text
string. By default, the request is identified using the title of the page.

x-rim-request-id No Specifies whether the browser will generate a unique ID and add it as an HTTP header for every offline
request resulting from this page. The value may be a Boolean True or False. By default, this value is True.

x-rim-request-date No Specifies whether the browser will generate a time stamp and add it as an HTTP header for every offline
request resulting from this page. The value may be a Boolean True or False. By default, this value is True.
33

BlackBerry Browser Version 4.2 Content Developer Guide
You can create form queues using these headers either by creating an HTTP property file or by adding the queuing
parameters directly to the HTML or WML page.

Create an HTTP header property file
Creating an HTTP property file in which you define the queuing parameters lets you create and manage multiple
form queues in a single location; however, it requires that you properly set your web server to send the headers
when the web page containing the form is requested.

To create a queue for a form on stock-monitor.xhtml, for example, you might define the queuing parameters as
follows:

<Files stock-monitor.xhtml>
Header set cache-control max-age=2592000
Header set x-rim-queue-id Register
Header set x-rim-request-title "Stock Monitor"
Header set x-rim-next-target success.xhtml

</Files>

You can add queuing parameters for additional forms within the same header file.

See “Offline form queue header file: .htaccess” on page 34 for a complete sample of the property file.

Example: Offline form queue header file: .htaccess

<Files stock-monitor.xhtml>
Header set cache-control max-age=2592000
Header set x-rim-queue-id Register
Header set x-rim-request-title "Stock Monitor"
Header set x-rim-next-target success.xhtml

</Files>
<Files stock_monitor.wml>

Header set cache-control max-age=2592000
Header set x-rim-queue-id Register
Header set x-rim-request-title "Stock Monitor"
Header set x-rim-next-target success.wml

</Files>
<Files success.xhtml>

Header set cache-control max-age=2592000
</Files>
<Files success.wml>

Header set cache-control max-age=2592000
</Files>

Add queuing parameters directly to the web page
Queuing parameters are managed differently by HTML pages and WML pages.

• In HTML or XHTML, queuing parameters are added using hidden <input> elements:

<input type="hidden" name="x-rim-queue-id" value="Register" />
<input type="hidden" name="x-rim-request-title" value="Stock Monitor" />
34

3: Designing wireless web content for the BlackBerry Browser
<input type="hidden" name="x-rim-next-target" value="success.xhtml" />

To see a sample XHTML page that defines queuing parameters, see “Creating an XHTML-MP page” on
page 43.

• In WML, queuing parameters are added using <postfield> elements:

<input type="hidden" name="x-rim-queue-id" value="Register" />
<input type="hidden" name="x-rim-request-title" value="Stock Monitor" />
<input type="hidden" name="x-rim-next-target" value="success.wml" />

To see a sample XHTML page that defines queuing parameters, see “Creating a WML page” on page 56.

Making requests for content only when content has changed
Download times in a wireless environment are typically slower than on a desktop browser. Therefore, downloading
content that has not changed since it was previously downloaded to the device—and that is therefore already
present in the browser cache—is both unnecessary and a waste of time.

By making GET requests conditional based upon whether the requested content is new, you can force the browser
to download content only when the cached content is out of date.

To make a GET request conditional, content developers must use the following HTTP headers.

Delivering device-specific content
When submitting an HTTP request, most desktop browsers, such as Microsoft® Internet Explorer and Netscape
Navigator®, include a header that identifies the browser and version. The BlackBerry browser includes the
Profile (User Agent Profile) header, which specifies the BlackBerry model and capabilities.

Header Description

If-Modified_Since This header is used with a GET method to request that the web server transfer content only if it has been
modified since the specified date and time. For example:

If-Modified-Since: Fri, 6 May 2005 12:00:00 GMT

The request is managed as follows:

• If the requested content has been modified since the specified date, or if the specified date is invalid (such
as a date that is later than the server’s current time), the content will be downloaded as normal.

• If the requested content has not been modified, the server sends a 304 (not Modified) response, and the
browser retrieves the content from the cache.

Last-Modified This header identifies the date and time at which the web content was most recently modified. For example:

Last-Modified: Fri, 6 May 2005 12:00:00 GMT

Note: The exact meaning of this header field depends on the implementation of the origin server and the
nature of the original resource:

• For files, it may be just the file system last-modified time.

• For entities with dynamically included parts, it may be the last-modified time of the most recently modified
component.

• For database gateways, it may be the last-update time stamp of the record.
35

BlackBerry Browser Version 4.2 Content Developer Guide
This header is a URL that uses the following form:

http://www.blackberry.net/go/mobile/profiles/uaprof/<BlackBerry-model>/
<software-version>.rdf.

where:

• <BlackBerry-model> is the BlackBerry device model number, for example, 6210 or 7210. The model number
lets you determine the screen dimensions and the color depth; BlackBerry devices that have a model number
that begins with the number six have a monochrome display. Devices that have a model number that begins
with the number seven or eight have a color display.

• <software-version> is the BlackBerry Device Software version, for example, 4.0.0 or 4.1.0.

The information contained in this headerlets you determine the content that is most appropriate for display on the
browser making the request. You can create a script to extract this information, letting the content server return
device-appropriate content in the HTTP response.

Other headers are also included, which help determine what content is sent. For example, the Accept header
specifies the content types that the browser accepts. The preferred content type is determined by the order of
content types in the Accept header, from left to right. For example, the following header indicates that WML is
preferred over HTML, and .gif images are preferred over .png images:

Accept: text/vnd.wap.wml, text/html, image/gif, image/png

Deliver device-specific content
1. Create device- and browser-specific content and images. For design tips, see “Creating effective content for

the BlackBerry Browser” on page 29.

2. Copy your content files into browser-specific directories on your web application server.

3. Write a browser detection script that parses the Profile header to determine the browser type and the
supported content types, and returns content that is appropriate for the requesting browser. See “Write a
browser detection script” on page 36 for more information.

4. Copy the browser detection script to your web application server.

5. Test the script by requesting content from a variety of browsers and devices. You can use the BlackBerry
Device simulator to simulate a variety of BlackBerry devices.

Write a browser detection script
Write a browser detection script using any scripting language that lets you access and manipulate HTTP headers.

The following example demonstrates how to write a browser detection script using Perl. The complete code sample
is provided at the end of this section. See “Browser detection script (index.pl)” on page 37 for more information

1. Assign variables for the Accept and User Agent Profile headers.

$content = $ENV{'HTTP_ACCEPT'};
$browser = $ENV{'HTTP_PROFILE'};;

Note: There is no way to differentiate between HTML or XHTML pages that are designed for desktop browsers and pages
that are designed for wireless devices. The MIME type text/html is used in both cases.
36

3: Designing wireless web content for the BlackBerry Browser
2. Determine whether the browser accepts HTML content. If it does, parse the User-Agent field to determine
whether this is a BlackBerry browser or a standard browser.

if ($content =~ html) {
if ($browser =~ BlackBerry) {

print "Location: http://mobile.blackberry.com/index.html", "\n\n";
}
elsif ($browser =~ Mozilla) {

print "Location: http://www.blackberry.com/index.shtml", "\n\n";
}

}

3. If the browser does not accept HTML, determine whether the client accepts WML content. If it does, parse the
User-Agent field to determine whether this is a BlackBerry browser or another type of device.

elsif ($content =~ wml) {
if ($browser =~ BlackBerry) {

print "Location: http://mobile.blackberry.com/wml/index.wml", "\n\n";
}
else {

print "Location: http://www.blackberry.com/unsupported.html", "\n\n";
}

}

4. Provide a default web page for all other browser types.

else
{

print "Location: = http://www.blackberry.com/index.html", "\n\n";
}

Example: Browser detection script (index.pl)

Copyright (C) 2004 Research In Motion Limited.
Note: URLs are used in this example for non-existent web sites.
#!c:\perl\bin\

$content = $ENV{'HTTP_ACCEPT'};
$browser = $ENV{'HTTP_USER_AGENT'};

if ($content =~ html) {
if ($browser =~ BlackBerry) {

print "Location: http://mobile.blackberry.com/index.html", "\n\n";
}
elsif ($browser =~ Mozilla) {

print "Location: http://www.blackberry.com/index.shtml", "\n\n";
}

}
elsif ($content =~ wml) {

if ($browser =~ BlackBerry) {
print "Location: http://mobile.blackberry.com/wml/index.wml", "\n\n";

}
else {

print "Location: http://www.blackberry.com/unsupported.html", "\n\n";
}

}

37

BlackBerry Browser Version 4.2 Content Developer Guide
else {
print "Location: http://www.blackberry.com/index.shtml", "\n\n";

}

Send device-appropriate images
This section describes how to write a Microsoft® Visual Basic® script that parses the Profile header and returns
device-appropriate images. The complete code sample is provided at the end of this section.

1. Create an Active Server Page.

2. At the top of your content file, specify the script language.

<%@ Language=VBScript %>

3. Specify the content type.

<%
'send the right MIME type
Response.ContentType = "text/vnd.wap.wml"
%>

4. Include the document declaration and markup language tags.

5. Parse the Profile header and determine the BlackBerry device model number. You can use the BlackBerry
model number to return a color or monochrome image.

<p><%
' Detect colour devices (model number 7XXX)
uaprof = request.servervariables("HTTP_PROFILE")

6. Specify the format of the Profile header.

' Format is:
‘ http://www.blackberry.com/go/mobile/profiles/uaprof/<model-number>/...

7. To accommodate monochrome devices by default, specify the BlackBerry 6210 Wireless Handheld™ as the
default model. By default, the server includes monochrome images in the HTTP response.

model="6210"

8. Include an If statement to verify that a BlackBerry device sent the Profile header.

If (InStr(uaprof, "http://www.blackberry.com/go/mobile/profiles/uaprof/") = 1)

9. Assign the 4-character string starting at position 53 to the model variable.

Then
model = Mid(uaprof, 53, 4)

End If

10. Include an If statement to return a color image if the device supports color, and a monochrome image if it
supports black and white images only.

if (model >= 7000) Then
Response.write("
<br/
>")

Else
Response.write(" ")
38

3: Designing wireless web content for the BlackBerry Browser
End If
%>

11. Include the rest of the page content.

Example: Color device detection

Copyright (C) 2004 Research In Motion Limited.
Note: URLs are used in this example for non-existent web sites.

<%@ Language=VBScript %>
<%
'send the right MIME type
Response.ContentType = "text/vnd.wap.wml"
%

<p align="center">

<%
' Detect colour devices (model number 7XXX)
uaprof = request.servervariables("HTTP_PROFILE")

' Format is:
‘ http://www.blackberry.com/go/mobile/profiles/uaprof/<model-number>/...
' Set the default model to be the 6210
model="6210"
If (InStr(uaprof, "http://www.blackberry.com/go/mobile/profiles/uaprof/") = 1)
Then

 model = Mid(uaprof, 53, 4)
End If

if (model >= 7000) Then
Response.write("

")

Else
Response.write(" ")

End If

%>

Tip: To obtain more BlackBerry device information, perform the following steps:

1. Retrieve the .rdf document that the Profile URL contains.

2. Parse the XML content.

3. Search for an entity in the XML document, for example, “prf:ColorCapable”.
39

BlackBerry Browser Version 4.2 Content Developer Guide
40

4
Creating XHTML pages

Using XHTML-MP
XHTML-MP is a subset of XHTML 1.1, extended with some WAP-specific tags. It has been designed for use by
devices with smaller displays and limited memory and CPU power. XHTML 1.1 is a superset of HTML 4.0. See WAP-
277-XHTMLMP-20011029-a at http://www.openmobilealliance.org/tech/affiliates/wap for more information.

The browser ignores any tags that are not part of the XHTML-MP subset and displays content as if the enclosing
tags are not present. See “XHTML-MP reference” on page 101 for more information.

Creating XHTML-MP–compliant sites
See “Browser content support” on page 17 for more information about browser content and image support.

• Syntax: Although it uses many standard HTML tags, XHTML-MP follows XML syntax conventions. This means
that, unlike HTML, XHTML-MP content must be well-formed.

• Every opening tag—including standalone tags such as <p>,
, and —must either have a
corresponding closing tag or be self closing.

• Elements and attributes must be lowercase.

• Attributes must be in quotations.

• Elements must be properly nested so that no element overlaps another element.

• Styles and style sheets: The browser supports both internal and external style sheets, as well as the STYLE
attribute that is used to provide an inline style for specific elements. The <link> tag is used to include
external style sheets, while the <style> tag encloses internal element styles.

The browser supports a limited subset of commonly used properties of the WAP CSS. See “WAP CSS
reference” on page 112 for more information about supported CSS properties.

The browser supports both background colors and background images.

• Fonts: Note the following font limitations:

• Many web clients cannot display fonts other than monospace fonts.

• The browser supports bold and italic fonts, as well as fixed-width fonts. Text that is enclosed in display
tags, such as and , appears in bold or italic, respectively. Other content-based style tags,
such as <code>, <samp>, and <kbd>, are displayed in a fixed-width font.

Using XHTML-MP
Creating an XHTML-MP page
Code sample: Creating an XHTML-MP web page

BlackBerry Browser Version 4.2 Content Developer Guide
• Text placed at angles and other text extension elements are not supported. To create text object effects,
consider using SVG for your mobile media content.

• Scripts and events: The browser supports JavaScript, but it does not support applets. The browser reads the
contents of a <script> tag, including any event-handler attributes. Only a limited subset of event handlers
are supported. See “JavaScript language reference” on page 133 for more information.

• Forms: XHTML-MP supports basic forms. The standard keyboard on BlackBerry devices lets users easily type
text into forms. File and image input types are not supported. Developers who want to create forms for writing
content to the device file system should consider writing a Java application.

The browser allows you to set up queues so that users can fill out and submit forms even when they are outside
of a wireless coverage area. See “Creating an XHTML-MP page” on page 43 for more information.

• Tables: The browser supports tables. Users can turn on HTML table support to properly display tables that fit
within the screen width of the device. Larger tables are split apart with the table cells displayed in vertical
sequence. Tables cannot be nested within each other.

You should test tables thoroughly in the BlackBerry Browser to verify that they display appropriately on the
device.

• Frames: The browser supports the <frameset> and <frame> elements, but does it not support inline frames
(the <iframe> element). Because of the difficulty in rendering the complex page layouts that frames provide
on smaller BlackBerry device screens, the layout specified for the frameset using the <cols> and <rows>
elements are ignored. Instead, frames are rendered vertically in a single column.

If a web page contains a frameset, the browser displays the content of each individual frame vertically in the
order in which they are encountered. The browser processes one frame at a time, and it renders each frame
completely before processing the next frame.

The browser also supports the following complex frameset behaviors:

• Links: Targeting links to specific frames is supported. When a link loads in an existing frame, the browser
preserves the other frames on the page and updates the content for the specified frame.

• Scripts: The browser supports JavaScript interaction between frames, provided the frames have the same
host, port, and protocol (HTTP or HTTPS). Interaction between frames includes the updating of multiple
frames by JavaScript, the execution of JavaScript functions in other frames, and access to JavaScript
variables in other frames.

• Nested framesets: The browser supports nested framesets and will render frames in the order in which
they are encountered; however, the browser limits the depth of nested frameset documents. Frames that
exceed the depth limit will be ignored.

Note: Support for frames is intended to improve usability when accessing content designed for desktop browsers; you should not
include frames when designing content specifically for Blackberry devices.
42

4: Creating XHTML pages
Creating an XHTML-MP page
The following sample creates a login page that is XHTML-MP–compliant and appears properly on the browser.
This sample creates a registration page for a fictitious stock-monitoring push service. The page lets customers of
an online broker service identify a stock that is of interest and set the performance conditions that must be met for
the Stock Monitor service to push out a notification.

To create an XHTML-MP page, complete the procedures that follow in the order in which they appear.

The complete code sample is provided at the end of this section. See “Code sample: Creating an XHTML-MP web
page” on page 49 for more information.

The complete sample should resemble the following diagram:

Completed sample, as viewed on a BlackBerry 7780 Wireless Handheld™

Create the skeleton HTML page
1. Create a new XHTML file with the name stock-monitor.xhtml.

2. Include the doctype specification and the <html> and <head> tags for your file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<base href="http://localhost:8080/">

3. To help users identify their location, include the site name in the title bar.

<title>Stock Monitor -- Registration</title>

4. Close the <head> tag.

</head>

5. Add the opening and closing <body> tags.

<body>

Note: In this section, each tag appears on a new line. When content exceeds the length of a line, the content continues on the next line
with an irregular indentation to indicate the line break.
43

BlackBerry Browser Version 4.2 Content Developer Guide
</body>

6. Close the <html> tag.

</html>

Design a navigation bar with links

1. Design the page navigation by adding links at the top of the page, between the <body> and
</body> elements. In this example, the navigation is nested inside a <div> element so that it can be
formatted using a style sheet.

<div class="navigation">
Home |
Query symbols |
Query exchanges |
Help

</div>

2. To emulate the BlackBerry interface separator, add an <hr/> element after the navigation bar. A properly
placed <hr/> tag creates a non-selectable separator line on your page, which makes your web pages
consistent with standard BlackBerry applications.

<hr/>

3. Add instructional text in a <p> tag.

<p>Welcome to Stock Monitor push application. To register, please complete
the form below: </p>

Create a form to collect information from the user
1. Under the instructional text, add the form. The following example invokes a .php script, when submitted:

<form name="monitor" method="post" action="stock-monitor.php">
</form>

2. Between the <form> and </form> elements, add a two-column table.
<table>
</table>

3. Between the <table> and </table> elements, add a row that contains an input of type “text” for the user’s
email address. Because email addresses can often be long, it should span both columns of the table. The
browser supports the spanning of columns and rows.

<tr>

Note: The browser also supports the http-equiv=”refresh” attribute for the <meta> element, which you can use to redirect one
page to another. For example, the following code redirects the browser to BlackBerry/index.html after a 2-second pause:

<meta http-equiv="refresh" content="2; url=http://localhost:8080/BlackBerry/index.html" />

Tip: An easily accessible navigation bar is an important part of creating an effective web page for BlackBerry devices. Users
should be able to access the primary links on each page with minimal scrolling. A bar of links at the top of each page
minimizes scrolling.

Tip: For a small screen, use separators to group related information and create a better visual flow for your web
documents.

Note: To make sure that the page conforms to XHTML Basic, tags such as <p> must be closed.
44

4: Creating XHTML pages
<td colspan="2">
Type your email address:
<input type="text" name="email" size="40" />

</td>
</tr>

4. Add a row containing the text input for the stock’s trading symbol.
<tr>

<td width="45%">
Product symbol:

</td>
<td width="55%">

<input type="text" name="symbol" size="6"/>
</td>

</tr>

5. Add a row containing a drop-down list that lets users select the exchange on which the stock is listed. Omit
the size attribute of the <select> element to display the radio buttons as a drop-down list instead of a list
box.

<tr>
<td >

Listed on:
</td>
<td>

<select name="exchange">
<option>TSE</option>
<option>NYSE</option>
<option>NASDAQ</option>
<option>Dow Jones</option>

</select>
</td>

</tr>

6. Add a row that contains a group of radio buttons that allow users to choose whether they are notified when
the stock price changes by a specified amount or when the stock price hits a high or low target price.

<tr>
<td>

Notification trigger:
</td>
<td>

<input type="radio" name="notify" value="change" checked>
Target price change

</input>

<input type="radio" name="notify" value="high-low">

Target high/low values
</input>

</td>
</tr>

7. Add a row containing a series of check boxes that lets users select items that are included in the notification,
such as a chart or news items related to the selected stock.

<tr>
<td>

Include with push:
</td>
<td>
45

BlackBerry Browser Version 4.2 Content Developer Guide
<input type="checkbox" name="chart">Performance chart</input>

<input type="checkbox" name="articles">Related articles</input>

</td>
</tr>

8. Create a submit button and add a reset button to lets users reset all values to the defaults.

<input type="submit" name="submit" value="Register">
<input type="reset" value=" Reset ">

9. Add three hidden inputs for user-supplied values. These values are set through a series of JavaScript dialog
boxes.

<input type="hidden" name="change" value="" />
<input type="hidden" name="maxtarget" value="" />
<input type="hidden" name="mintarget" value="" />

Add graphics

1. Include a right-aligned image using the tag.

2. Include an alt attribute to provide a short description for the image.

<img align="right" src="bb_power-wee.gif" height=20
alt="powered by BlackBerry" />

3. Make the image a link by nesting it in an <a> element.

<img align="right" src="bb_power-wee.gif" height=20

alt="powered by BlackBerry" />

Create a footer with email and phone links
1. To create a footer that resembles the header, include the footer elements in a <div> tag, with the same

navigation CLASS attribute that is used for the header navigation. The sample separates the footer with
preceding and following <hr/> tags.

<hr/>
<div class=”navigation”>

</div>
<hr/>

2. Add an email link to your page.

Email

3. Add a phone link to your page.

Telephone

Tip: When you create pages to be viewed on wireless devices, avoid using unnecessary images. A recognizable logo is one image you
should include, so that visitors will know that they have arrived at the correct page.
46

4: Creating XHTML pages
Add styles
1. Create styles using WAP CSS syntax. These styles can be nested under a <style> element that is located

between the <head> and </head> elements or included in a separate CSS file.

div.navigation {
background-color: lightgrey;
font-family: arial;
font-size: 4pt;
}

2. If you have created an external style sheet, between the <head> and </head> elements, add a <link>
element. This element must have attributes that define the name of the CSS file and identify the content as
style properties.

<link rel="stylesheet" href="stock-monitor.css" type="text/css" />

The complete CSS file is provided at the end of this section. See “stock-monitor.css” on page 53 for more
information

Add JavaScript(s) to extend functionality

1. Between the <head> and </head> elements, add a <script> element and define the script language as
JavaScript.

<script type = "text/javascript">
</script>

2. Between the <script> and </script> elements, define a function called ValidateForm().

function ValidateForm() {

3. Add a routine to verify that the user has specified an email address. If no email address has been specified,
display a dialog box.

if ((emailID.value==null)||(emailID.value=="")) {
alert("Please Enter your Email Address");
emailID.focus();
return false;

}

4. Add a routine to verify that the user has specified a stock symbol. If no stock symbol has been specified,
display a dialog box.

if ((symbol.value==null) || (symbol.value=="")) {
alert("Please enter a symbol for the financial product you want

to monitor.");
symbol.focus();
return false;

}

5. Add a routine to determine if the user selected the Target change value notification trigger. If so, display a
dialog box that lets the user specify the amount by which the stock price must change to trigger a notification
message.

if(document.monitor.notify[0].checked) {

Note: The sample code uses an internal JavaScript to make sure that the form is not submitted with empty input fields. It also uses
prompt dialog boxes to acquire additional information from users based on their choices in the form.
47

BlackBerry Browser Version 4.2 Content Developer Guide
change = prompt("Specify the value change for " + symbol.value +
" required to trigger a notification: ", change);

if (confirm("You will be notified when " + symbol.value + " changes by
at least $" + change + " per share, based on its value
at the time ofregistration")==true) {

document.monitor.change.value = change;
return true;

} else {
return false;

}
}

6. Add a routine to determine if the user selected the Target high/low value notification trigger. If the user
has selected the check box, display a dialog box that lets the user specify a target high followed by a dialog
box that lets the user specify a target low.

if(document.monitor.notify[1].checked) {
maxtarget = prompt("Please enter the target high value for " +

symbol.value + ":", maxtarget);
mintarget = prompt("High value set at $" + maxtarget + ". Please

enter the target low value:", mintarget);
if (confirm("You will be notified when the financial product " +

symbol.value + " reaches a high of $" + maxtarget + " or
a low of $" + mintarget + " per share.")==true) {

document.monitor.maxtarget.value = maxtarget;
document.monitor.mintarget.value = mintarget;
return true;

} else {
return false;

}
}

7. Add an onSubmit event handler to the <form> element, which calls the ValidateForm() JavaScript function
created in step 1.

<form name="monitor" method="post" action="bb-broker.php"
onSubmit="return ValidateForm()">

Set up a queue for offline form submissions

> Between the <form> and </form> elements, add a hidden <input> element for each header that you want to
define. The x-rim-request-title property must be defined; other queuing parameters are optional. See
“Defining queues for offline form submission” on page 33 for more information about the available queuing
parameters.

For each <input> element, the name attribute corresponds to the header name (for example,
x-rim-queue-id), while the value attribute defines the value for that header.

<input type="hidden" name="x-rim-queue-id" value="Register" />
<input type="hidden" name="x-rim-request-title" value="Stock Monitor

Registration" />
<input type="hidden" name="x-rim-next-target" value="success.html" />

Note: In the sample, offline form submission is set up by adding hidden <input> elements to the form.
48

4: Creating XHTML pages
See “Defining queues for offline form submission” on page 33 for more information about the headers that
are used to define form queues.

Test the page
When you design content for the browser, you should test content in the browser throughout the design and
creation process to verify that the page displays and functions properly on BlackBerry devices. If you wait until the
page is complete before you test it, errors can be more difficult to identify and correct.

Test content using a BlackBerry device or by using the BlackBerry Device Simulator. The BlackBerry Device
Simulator is included with the BlackBerry® Java™ Development Environment (BlackBerry JDE).

The simulator’s browser application includes a built-in WAP gateway, so that you can test XHTML pages by
opening them in the WAP Browser configuration. You can also simulate the network gateways for the BlackBerry
Browser and the Internet Browser configurations using the BlackBerry MDS Simulator. This simulator includes the
content transcoding and optimization services so that your code is optimized for viewing in these browser
configurations.

See “Testing web pages” on page 99 for more information.

Code sample: Creating an XHTML-MP web page

Example: stock-monitor.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Stock Monitor -- Registration</title>

<!-- Adding a meta tag define how this page may be cached. -->
<meta http-equiv="cache-control" content="public" />

<!-- Linking to an external stylsheet. -->
<link rel="stylesheet" href="stock-monitor.css" type="text/css" />

<!-- Creating a javascript which checks input and selections, and requests
further information through dialogs. -->
<script type = "text/javascript">

function ValidateForm() {

<!-- set variables -->
var emailID=document.monitor.email;
var symbol=document.monitor.symbol;
var change=””;
var targetmax=””;
var targetmin=””;

Tip: You can also set up forms by formatting your web site with the necessary headers. See “Defining queues for
offline form submission” on page 33 for more information.
49

BlackBerry Browser Version 4.2 Content Developer Guide
<!-- If no email address has been entered, alert user. -->
if ((emailID.value==null)||(emailID.value=="")) {

alert("Please Enter your Email Address");
emailID.focus();
return false;

}

<!-- If no symbol has been entered, alert user. -->
if ((symbol.value==null) || (symbol.value=="")) {

alert("Please enter a symbol for the financial product you want
to monitor.");

symbol.focus();
return false;

}

<!-- If target price change used, get change amount. -->
if(document.monitor.notify[0].checked) {

change = prompt("Specify the price change for " + symbol.value
+ " required to trigger a notification: ",
change);

if (confirm("You will be notified when " + symbol.value +
" changes by at least $" + change + " per
share, based on its value at the time of
registration.")==true) {

document.monitor.change.value = change;
return true;

}
}

<!-- If target max/min values used, get them. -->
if(document.monitor.notify[1].checked) {

maxtarget = prompt("Please enter the target high value for " +
symbol.value + ":", maxtarget);

mintarget = prompt("High value set at $" + maxtarget + ". Please
enter the target low value:", mintarget);

if (confirm("You will be notified when the financial product "
+ Symbol.value + " reaches a high of $"
+ maxtarget + " or a low of $" + mintarget
+ " per share.")==true) {

document.monitor.maxtarget.value = maxtarget;
document.monitor.mintarget.value = mintarget;
return true;

} else {
}

 }
</script>

</head>

<body>

<!-- Creating a navigation bar. -->
<div class="navigation">

Home |
Query symbols |
50

4: Creating XHTML pages
Query exchanges |
Help

</div>
<hr/>

<p>Welcome to Stock Monitor push application. To register, please complete
the form below: </p>

<!-- Creating a form to collect information. -->
<form name="monitor" method="post" action="stock-monitor.php"

onSubmit="return ValidateForm()">
<hr/>
<!-- Adding a table to organize form elements. -->
<table>

<tr>
<td colspan="2">

Enter your email address:
<input type="text" name="email" size="40" />

</td>
</tr>
<tr>

<td width="45%">
Product symbol:

</td>
<td width="55%">

<input type="text" name="symbol" size="6"/>
</td>

</tr>
<tr>

<td >
Listed on:

</td>
<td>

<!-- Creating a drop-down list. -->
<select name="exchange">

<option>TSE</option>
<option>NYSE</option>
<option>NASDAQ</option>
<option>Dow Jones</option>

</select>
</td>

</tr>
<tr>

<td>
Notification trigger:

</td>
<td>

<!-- Creating a group of radio buttons. -->
<input type="radio" name="notify" value="change" checked>

Target price change
</input>

<input type="radio" name="notify" value="high-low">

Target high/low value
</input>

</td>
</tr>
51

BlackBerry Browser Version 4.2 Content Developer Guide
<tr>
<td>

Include with push:
</td>
<td>

<!-- Creating a series of checkboxes -->
<input type="checkbox" name="chart">

Performance chart
</input>

<input type="checkbox" name="articles">

Related articles
</input>

</td>
</tr>

</table>
<hr/>
<!-- Adding submit and reset buttons. -->
<center>

<input type="submit" name="submit" value="Register" />
<input type="reset" value="Reset" />

</center>

<!-- Adding some hidden inputs that will be set via the ValidateForm()
javascript function. -->

<input type="hidden" name="change" value="" />
<input type="hidden" name="maxtarget" value="" />
<input type="hidden" name="mintarget" value="" />

<!-- Adding some hidden inputs that define the queue for the offline
submission of the form. -->

<input type="hidden" name="x-rim-queue-id" value="Register" />
<input type="hidden" name="x-rim-request-title" value="Stock Monitor

Registration" />
<input type="hidden" name="x-rim-next-target" value="success.html" />

</form>

<!-- Adding an image with a link. -->

<!-- Adding footer with non-browser links. -->
<hr/>
<div class="navigation">

Contact Stock Monitor:
Email |
Telephone

</div>
<hr/>

</body>
</html>
52

4: Creating XHTML pages
Example: stock-monitor.css

p {
font-family: arial;
font-size: 6pt;
colour: black
}

table {
background-color: lightgrey;
font-family: arial;
font-size: 6pt;
}

input {
-wap-input-required: true;
font-family: arial;
font-size: 6pt;
}

select {
font-family: arial;
font-size: 6pt;
border-width= 0pt;
}

div.navigation {
background-color: lightgrey;
font-family: arial;
font-size: 4pt;
}

a {
color: darkblue

}

53

BlackBerry Browser Version 4.2 Content Developer Guide
54

5

Creating WML pages

Using WML
WML is an XML language that conforms to XML 1.0 rules; for example, tags are case-sensitive, and every opening
tag must either have a corresponding closing tag or be self-closing. The browser supports WML 1.3 and WML Script
1.2.1. See “WML language reference” on page 123 for more information about supported WML tags.

WML is primarily a text-based language that facilitates chunking information into small sections for display on
mobile devices. Because of the small screen size, typical desktop-oriented HTML pages do not typically display
effectively on a mobile browser. HTML content is generally designed for a much larger space, and it often includes
elements such as complex tables or framesets that render poorly or not at all on the browser. Also, the amount of
text on most HTML sites results in a browsing experience that requires a great deal of scrolling.

WML breaks down information into chunks, called “cards.” Each card contains a single topic, or about a screen’s
worth of content. These related WML cards are then connected using navigational links. A set of related WML cards
are included in a single .wml file, which is referred to as a “deck.” From an HTML perspective, a WML deck is similar
to creating a single HTML file that includes multiple <body> sections.

WML offers several advantages for mobile browsers:

• WML decks reduce the number of client-server transactions; decks are transmitted as individual pages.

• WML cards provide an optimal device browsing experience because chunks of content display as a single
screen and they require minimal scrolling.

• WML has a small tagset compared to HTML.

• WML supports forms, option lists, and text entry, which is ideal for users who want to retrieve specific
information.

WML design tips
• Structure: Limit one element for each line of code.

• Syntax: Use proper syntax. WML is an XML language; therefore, content must be well-formed.

• Every opening tag—including standalone tags such as <p>,
, and —must either have a
corresponding closing tag or be self-closing.

Using WML
Creating a WML page
Code sample: Creating a WML web page

Note: The browser supports WML Script except for the Float standard library and all functions that use floating point values. Floating
point refers to numbers with a varying number of digits before or after the decimal point; that is, the decimal point can float.

BlackBerry Browser Version 4.2 Content Developer Guide
• Elements and attributes must be lowercase.

• Attributes must be in quotations.

• Elements must be properly nested such that no element overlaps another element.

• File types: Verify that your application server accepts .wml files, plus any other file types (for example, .gif, .pl)
that might be included in your content. Application servers include a list of supported file and application
types, known as MIME types.

• WML-specific elements: While the WML tagset is essentially a subset of HTML, several elements are unique to
WML.

• WML <do> elements are triggered by user-initiated events. Each <do> element has a corresponding action
that occurs when the user performs a <do> event.

In the browser, the first two <do> elements that are defined on a card appear both as menu items on the
browser menu and as “soft keys” in a non-scrolling area at the bottom of the screen. Any additional <do>
elements are added to the browser menu.

If a label attribute is included in the <do> element, the label text is displayed as the menu item and the
soft key. If no label is included, a default label is displayed based on the type of <do> element, such as
Accept, Prev, Help, Reset, Options, or Delete.

• WML <select> items are displayed either as a list of radio buttons (for single selection) or as a list of
check boxes (for multiple selection). Users can use the trackwheel or keyboard to scroll through the
options, and then click the Select Option menu item or press the Space or Enter key to select an option.

You can use the onpick attribute to perform an action when the user selects an option. See “Use WML
events” on page 60 for more information.

• WML <access> items limit which other web pages can reference your pages. To grant an authorized
domain access to your page (for example, www.blackberry.com), provide the domain attribute.

<head>
<access domain="255.255.255.255"/>

</head>

When a user attempts to access the page from another domain, the “Access denied” message appears.

Creating a WML page
The following example demonstrates how to create a simple login page in WML. It also provides some tips about
how to create a page that displays successfully in the browser.

The following sections walk through the steps required to create a sample WML deck. In this example, a deck is
created that contains three cards: a login screen, a links screen, and a help screen to assist users who are having
trouble logging in. The complete WML sample is provided at the end of this section.

Define the WML deck and cards
1. Create a file with the name stock-monitor.wml.

Note: Specifying deck access limits users’ ability to open your web site in a browser. Unless your browser application is designed
for a private audience (such as an intranet application), do not use the <access> element.
56

5: Creating WML pages
2. Define your document.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

3. Insert the opening WML element tag. All templates and cards are added between this tag and its closing tag.
<wml>

4. Create the main card that users will use to log in. This card also functions as the Home page of the site.
<card id="Page1" title="Stock Monitor Registration">

5. Specify a default <do> action for the card. <do> elements with the type="accept" attribute are the default
card action and they appear first on the browser menu. The browser automatically performs the first <do>
element with the type accept when the user has provided input for all input elements on a card and presses
the ENTER key.

<do type="accept" label="Next">

Provide a descriptive label for each <do> action. Limit the length of <do> labels to 12 characters so that the
label does not exceed the width of the browser menu. Capitalize the first letter of each word in a label to
maintain consistency with BlackBerry menu items. This page lets users continue to the next card in the deck,
so it is labelled “Next.”

All <do> elements require a corresponding action, for example, <go> or <prev>. A subsequent procedure adds
an action to this element.

6. Add the closing tag for this card.
</card>

7. Create additional cards with Next and Back soft keys. This card contains an option list of links.

<card id="Page2" title="Stock Monitor -- Choose Stock">
<do type="accept" label="Next">

<go href="#Page3" />
</do>
<do type="prev" label="Back">

<go href="#Page1" />
</do>

</card>

8. Create a new card for the help page.

<card id="Help" title="Help">
<p>

This page contains helpful hints.
</p>

</card>

9. Add the closing tag for this deck.
</wml>

Add a template
WML templates let you include content in several cards at the same time. Using templates saves time and
minimizes the content that is sent over the wireless network; content that is duplicated across multiple cards only
needs to be included once in the deck. Templates can contain only <do> and <onevent> tags.

In this example, we want to add a help menu item that is available for each card.
57

BlackBerry Browser Version 4.2 Content Developer Guide
1. Create the template by inserting the following tag immediately after the <wml> tag:

<template>

2. Add the repeated content or functionality. To add a Help menu item, add a <do> element that contains a <go>
action that identifies the help page to be displayed:

<do type="help" label="Help" >
<go href="#help"/>

</do>

3. Close the <template> element:

</template>

The Help soft key is added by default to every card in the deck. Because most cards in the deck contain Next
and Back soft keys, however, the Help option will appear only as menu item.

See “Use WML events” on page 60 for more information about overriding template content on specific cards.

Add input fields
1. Add an email input field to the first card. WML does not require that you enclose <input> elements in a

<form>.

<p>
Please enter your email address:
<input type="x-rim-email-input" name="email" />

</p>

By default, input fields begin on a new line. Text fields span the width of the browser window. To limit the
number of characters that users can type, use the maxlength attribute.

2. Add a stock symbol input field to the second card.

<p>
Product trading symbol: <input type="text" name="symbol"

format ="*AAA" />
</p>

3. To specify the action that the card performs when the user submits the content, add a <go> tag inside the
primary <do> element that you created in the “Define the WML deck and cards” procedure. In this example, a
Perl script runs. In the following code, the <do> element already exists.

<do type="accept" label="Submit">
<go href="/cgi-bin/loginScript.pl" method="post">

<postfield name="name" value="$(loginID)"/>
<postfield name="password" value="$(password)"/>

</go>

Notes:

• To create a link to a subsidiary card, prefix the card id with a number sign (#) character.

• WML <do> elements appear at the bottom of the screen, from left to right. The order in which the items appear depends on
the sequence of <do> elements in the file; the first <do> element appears at the left.

Note: The browser hides user input for fields in which you specify type="password".
58

5: Creating WML pages
</do>

Using the <do> element, instead of <a> and <anchor> tags lets you bind an action to the default option for
the page.

Create an option list
1. Add introductory text to the Page2 card.

<p>
Listed on:

</p>

2. Add an option list using the <select> element.
<select name="name" title="Listed on" value="TSE">

<option value="TSE">TSE</option>
<option value="NYSE">NYSE</option>
<option value="NASDAQ">NSADAQ</option>
<option value="Dow Jones">Dow Jones</option>

</select>

3. On the Page3 card, add two more option lists. One will lets users specify the notification trigger method; the
other will let them select what additional information will be pushed with the notification. The second list is a
multiple-selection list.

<p>
Notification trigger:
<select name="trigger" value="c">

<option value="c">Target price change</option>
<option value="r">Target high and low values</option>

</select>
</p>

<p>

Include with push:
<select name="includes" multiple="true">

<option value="chart">Performance chart</option>
<option value="articles">Related articles</option>

</select>
</p>

Add an image
Use the tag to include an image on the Help page. Place the image right-aligned in a new paragraph after
the Help page contents.

<p align="right" >
<!-- Adding an image with a link. -->

</p>

Note: This section adds a single-selection option list (a set of radio buttons). To render a list as a series of check boxes, add the
attribute multiple="true" to the <select> element.
59

BlackBerry Browser Version 4.2 Content Developer Guide
Use WML events
This section describes how to use WML events. You can use the following WML events:

• User-initiated events trigger actions when the user interacts with a screen element. You can use the following
events:

• onenterbackward: Triggers an action to occur when the user enters the card by clicking <prev>

• onenterforward: Triggers an action to occur when the user enters the card by clicking <go>

• onpick: Triggers an action to occur when the user selects an option

• Timeline events trigger actions that occur at a certain point in time. A single event is available:

• ontimer: Triggers an action to occur when the timer on a card expires

1. On the Help card, add an onpick event attribute to each option in the option list, so that the browser opens
the specified URL when the user selects the option.

<option value="rim" onpick="http://www.rim.com">
Research In Motion

</option>
<option value="blackberry" onpick="http://www.blackberry.com">

BlackBerry products
</option>
<option value="developers" onpick="http://www.blackberry.com">

BlackBerry Developer Zone
</option>

2. Modify the <card> element for the first card (Page1) to add a timer event, so that the Help card opens if the
user takes longer than 2 minutes to log in.

<card id="main" title="BlackBerry WML sample" ontimer="#help">
<timer value="2400"/>

Use the WML ontimer attribute to force new content to the browser after a specified amount of time has
passed.

The timer value is measured in tenths of a second, and the counter is reset when the page is refreshed. The
<timer> element is commonly used to redirect a WML page to another WML page; setting the value attribute
to 1 redirects the page automatically.

Add WMLScript(s) to extend functionality
1. Create a file with the name stock-monitor.wmls.

2. Define a function called setTriggers().

function setTriggers() {

3. Declare variables for each trigger. A variable must be declared for both the target high and low options. Set
each variable to an initial value of null.

var valChange = "";
var valHigh = "":
var valLow = "";

4. Retrieve the trigger variable from the Page3 card.
var trigger = WMLBrowser.getVar("trigger");
60

5: Creating WML pages
5. Determine which trigger option was selected.
var change = String.find(trigger,"c");
var range = String.find(trigger,"r");

6. If the Target price change option was selected, display a dialog box that lets the user specify the amount
by which the stock price must change to trigger a notification message.

if(change) {
var valChange = Dialogs.prompt("Change value: ","");
var message = "You will be notified when the value changes by $"

+ valChange;
}

7. If the Target high/low value option was selected, display a dialog box that lets the user specify a target
high, followed by a dialog box that lets the user specify a target low.

if(range) {
var valHigh = Dialogs.prompt("High value: "."");
var valLow = Dialogs.prompt("Low value: ", "");
var message = "You will be notified when the value reaches a high of $"

+ valHigh + " or a low of $" + valLow;
}

8. Add a go event to the Page3 card that calls the setTriggers WMLScript function created in step 1.
<do type="accept" label="Next">

<go href="stock-monitor.wmls#setTriggers()"/>
</do>

Set up a queue for offline submissions
> Between the <go> and </go> elements, add a <postfield> element for each header that you want to define.

The x-rim-request-title property must be defined; other queuing parameters are optional.

For each <input> element, the name attribute corresponds to the header name (for example,
x-rim-queue-id), while the value attribute defines the value for that header.

<postfield name="x-rim-queue-id" value="Login"/>
<postfield name="x-rim-request-title" value="Login"/>
<postfield name="x-rim-next-target" value="success.wml"/>

See “Defining queues for offline form submission” on page 33 for more information about the headers used to
define form queues.

Override a template
You might not want template elements to appear on every card in the deck. Use a technique called shadowing to
hide certain template elements on a card by adding the <noop> element. For example, you can hide the link to the
Help card on the Help card itself. To use the <noop> element to hide a soft key, first add the <do> element that you
want to hide, and then add the <noop> element.

1. On the Help card, after the <card> element, add the <do> element with the label="Help" attribute from the
template that you want to shadow.

<do type="help" label="Help" >

Note: You can also set up forms by formatting your web site with the necessary headers. See “Defining queues for offline form
submission” on page 33 for more information.
61

BlackBerry Browser Version 4.2 Content Developer Guide
2. Instead of including the <go> element within the <do> element, use the <noop/> element. <noop/> tells the
browser to hide this option for this card.

<noop/>
</do>

Test the page
When you design content for the browser, you should test content in the browser throughout the design and
creation process to verify that the page displays and functions properly on BlackBerry devices. If you wait until the
page is complete before you test it, errors can be more difficult to identify and correct.

Test content using a BlackBerry device or by using the BlackBerry device simulator. The BlackBerry device
simulator is included with the BlackBerry JDE.

The simulator’s browser application includes a built-in WAP gateway, so that you can test WML pages by opening
them in the WAP Browser configuration. You can also simulate the network gateways for the BlackBerry Browser
and the Internet Browser configurations using the BlackBerry MDS Simulator. This simulator includes the content
transcoding and optimization services so that your code is optimized for viewing in these browser configurations.

See “Testing web pages” on page 99 for more information.

Code sample: Creating a WML web page

Example: login.wml

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "http://www.wapforum.org/DTD/
wml_1.1.xml">

<!--Copyright (C) 2004 Research In Motion Limited. All Rights Reserved -->
<!--loginScript.pl script, referenced in this example, is not shown here -->

<wml>

<template>
<do type="help" label="Help">

<go href="#Help"/>
</do>

</template>

<card id="Page1" title="Stock Monitor Registration" ontimer="#Help">
<timer value="2400"/>
<do type="accept" label="Next">

<go href="#Page2" />
</do>

<p>
Please enter your email address:
<input type="text" name="email" />

</p>
<p align="right" >

<!-- Adding an image with a link. -->

62

5: Creating WML pages

</p>
</card>

<card id="Page2" title="Stock Monitor -- Choose Stock">
<do type="accept" label="Next">

<go href="#Page3" />
</do>
<do type="accept" label="Back">

<go href="#Page1" />
</do>
<p>

Product trading symbol: <input type="text" name="symbol"
format ="*AAA" />

</p>
<p>

<!-- Creating a single selection list. -->
Listed on:
<select name="name" title="Listed on" value="TSE">

<option value="TSE">TSE</option>
<option value="NYSE">NYSE</option>
<option value="NASDAQ">NSADAQ</option>
<option value="Dow Jones">Dow Jones</option>

</select>
</p>
<p align="right" >

<!-- Adding an image with a link. -->

</p>
</card>

<card id="Page3" title="Stock Monitor -- Push Options">
<do type="accept" label="Next">

<go href="stock-monitor.wmls#setTriggers()"/>
</do>
<do type="accept" label="Back">

<go href="#Page2"/>
</do>
<p>

<!-- Creating a single selection list. -->
Notification trigger:
<select name="trigger" value="c">

<option value="c">Target price change</option>
<option value="r">Target high and low values</option>

</select>
</p>

<p>

<!-- Creating a multiple selection list. -->
Include with push:
<select name="includes" multiple="true">

<option value="chart">Performance chart</option>
<option value="articles">Related articles</option>

</select>
</p>
63

BlackBerry Browser Version 4.2 Content Developer Guide
<p align="right" >
<!-- Adding an image with a link. -->

</p>
</card>

<card id="Page4" title="Confirm Registration Data">
<p>

You chose to monitor $(symbol), listed on $(exchange)

$(message)

</p>

<p align="right" >

<!-- Adding an image with a link. -->

</p>
<do type="accept" label="Submit">

<go href="stock-monitor.php" method="post">

<!-- Adding some postfields for each variable that must be
submitted. -->

<postfield name="symbol" value="$(symbol)"/>
<postfield name="exchange" value="$(exchange)"/>

 <postfield name="valChange" value="$(valChange)"/>
<postfield name="valHigh" value="$(valHigh)"/>
<postfield name="valLow" value="$(valLow)"/>
<postfield name="includes" value="$(includes)"/>

<!-- Adding some postfields that define the queue for
the offline submission of the form. -->

<postfield name="x-rim-queue-id" value="Register"/>
<postfield name="x-rim-request-title" value="Stock Monitor

Registration"/>
<postfield name="x-rim-next-target" value="success.wml"/>

</go>
</do>
<do type="accept" label="Back">

<go href="#Page3"/>
</do>

</card>

<card id="Help" title="Help">

<!-- Disabling the Help soft key. -->
<do type="help" label="Help">

<noop/>
</do>
<p>

This page contains helpful hints.
</p>
<p>

For more information, click an option:
<select name="URLSelection">
64

5: Creating WML pages
<option value="rim" onpick="http://www.rim.com">
Research In Motion

</option>
<option value="blackberry" onpick="http://www.blackberry.com">

BlackBerry products
</option>
<option value="developers" onpick="http://www.blackberry.com">

BlackBerry Developer Zone
</option>

</select>
</p>

</card>

</wml>

Example: stock-monitor.wmls

function setTriggers() {

var trigger = WMLBrowser.getVar("trigger");
var change = String.find(trigger,"c");
var range = String.find(trigger,"r");
var valChange = "";
var valHigh = "":
var valLow = "";

if(change) {
var valChange = Dialogs.prompt("Change value: ","");
var message = "You will be notified when the value changes by " + valChange;

}
if(range) {

var valHigh = Dialogs.prompt("High value: "."");
var valLow = Dialogs.prompt("Low value: ", "");
var message = "You will be notified when the value reaches a high of $"

+ valHigh + " or a low of $" + valLow;
}

var ret = Browser.go("bb.wml#Page4");
}

65

BlackBerry Browser Version 4.2 Content Developer Guide
66

6

Creating browser push applications

Push applications
With push applications, you can send new web content and alerts to specific users. Users do not have to request or
download the data because the push application delivers the information as it becomes available.

Two types of push applications exist:

• Browser push applications: Web content is sent to the browser on the BlackBerry device. The BlackBerry
Browser configuration supports RIM and PAP push applications. WAP Browser configuration supports WAP
push applications. The Internet Browser configuration does not support push applications.

• Client/server push applications: Data is sent to a custom Java application on the BlackBerry device. Client/
server push applications consist of a custom client application for the BlackBerry device and a server-side
application that pushes content to the client application. This approach provides more control over the type of
content that you can send out and how this data is processed and displayed on the device compared to
browser push applications. See the BlackBerry Java Development Environment Development Guide for
information about writing custom Java applications.

BlackBerry Browser configuration push support
The BlackBerry Enterprise Server, with the BlackBerry MDS Connection Service running, manages the flow of data
from the push application to the device using the same encrypted channel that is used for data communication
between the device and the BlackBerry Enterprise Server. The push application sends data to users based on their
email addresses.

With a central database of the BlackBerry device users in the organization, the BlackBerry Enterprise Server
directs content to the appropriate devices. The network gateway manages the connection to the wireless network
and verifies that content is delivered to users as soon as they are in a sufficient wireless coverage area.

Push applications
The BlackBerry push process
Defining push attributes
RIM push service implementation
PAP push service implementation

Note: RIM push applications require BlackBerry Enterprise Server for Microsoft Exchange Version 3.5 or later, or BlackBerry
Enterprise Server for IBM Lotus Domino Version 2.2 or later, with the BlackBerry MDS Connection Service turned on.

BlackBerry Browser Version 4.2 Content Developer Guide
Server applications push content to devices by sending HTTP POST requests to the BlackBerry Enterprise Server.
The BlackBerry MDS Connection Service of the BlackBerry Enterprise Server forwards the content to the
appropriate devices, based on user email addresses. On the device, a separate browser push listener thread listens
on port 7874 for incoming messages and processes those messages.

The BlackBerry MDS Connection Service supports two push service implementations:

• RIM Push: Sends the push content as a byte stream to the destination user and port that is specified in the
URL of the push message. Push data can be stored on the in stored in RAM of the BlackBerry MDS Connection
Service server or in the BlackBerry Enterprise Server database.

• Push Application Protocol (PAP): Sends an HTTP POST request containing a PAP message. This message is a
MIME multipart message that includes an XML document specifying the control entity and the push content.
The control entity contains information about the destination device address, message ID, delivery time
stamps, and so on.

Supported push methods
You can push web content to the browser in one of the following ways:

• Browser channel push: Applications can push data to the device that creates or updates channels. These
pushes appear on the device Home screen with a custom icon. Channels act as browser-based applications on
the devices for regular updates of certain types of data.

A channel push request can include URLs for two icons:

• one to indicate that content is new or updated

• one to indicate that content has been read

When the device receives a channel push message, it creates a new channel, or updates the channel if the
channel already exists. When a channel has been added or updated, an icon appears on the Home screen to
alert users that content is available. For example, an order-tracking channel could change the icon as product
orders are entered. Users click the icon to open an instance of the browser that displays the pushed content.

Channel push requests include a channel identifier that uniquely describes the channel. Push applications
can delete a channel and remove the icon from the device Home screen by sending another push request with
the ID of the channel to delete.

• Message push: Applications can push content pages to the message list on the device. The message push
request might include a descriptive title, which appears in the message list. Otherwise, the browser message
displays the URL. Users open the message in the message list to open the browser and view the specified
page.

Push applications can include the content in the browser message, so that the browser renders the pushed
content immediately. Alternatively, the application can include only the URL, so that the browser retrieves the
content only when the user requests it, either from the local cache or from the network.

Note: Deleting a channel deletes only the instance of the channel that is currently stored on the BlackBerry device. If the server
pushes the channel again, it reappears on the device Home screen.
68

6: Creating browser push applications
• Browser cache push: Applications can push content directly to the browser cache. Pushing content to the
cache lets users access the content quickly, even when they are outside a wireless coverage area. Cache push
content can be associated with a channel.

If a channel identifier is specified, the content URL is added to the appropriate channel (if the channel is
already active on the device) and to the persistent cache. Otherwise, the content is added to the persistent
cache only. The user recieves no indication that the content has been updated. The next time that the user
visits the specified URL, the browser retrieves the content from the cache.

When an application pushes data to the browser cache, the application can include an expiry time that defines
how long the data remains in the cache before it is cleared.

When performing a Browser Channel or Browser Content push, the default amount of time that push content will
be stored in cache memory varies depending on which version of the BlackBerry Device Software is running on the
device. In BlackBerry Device Software Version 3.8 and later, pushed content is cleared from the cache after 12
hours. On devices running an earlier version of the BlackBerry Device Software, pushed content expires and is
cleared from the cache after 29 days.

To increase or decrease the time content stored in cache memory, specify a date and time in the HTTP header of
the push request with the Expires header. The following example will store content in cache until September 7th,
2005 at 8 AM.

Expires: Wed, 07 Sept 2005 08:00:00 GMT

Reliable pushes
Push application developers can configure their push applications to provide acknowledgement upon the
successful delivery of a push submission. This acknowledgement lets them verify that content has reached the
device.

The following two levels of acknowledgement are available:

• Transport level: The destinitation device sends a message to the push initiator acknowledging that the
content has arrived at the destination device. Transport-level acknowledgment provides confirmation that
the data has been delivered to the device; there is, however, no guarantee that the data has been delivered to
the client application.

Transport-level acknowledgement is supported for all destination devices. If no acknowledgement level is
specified by the push application, transport level is assumed.

• Application level: The destinitation device sends a message to the push initiator only after the content has
reached the intended client application.

Application-level acknowledgement is supported only by those devices running BlackBerry Device Software
Version 4.0 or later.

To maximize the reliability of push messages, push application developers can specify an Application Level
Acknowledgement Preferred setting, which uses application-level acknowledgements for those devices running
BlackBerry Device Software Version 4.0 or later, and transport-level acknowledgements for those devices running
earlier versions of the BlackBerry Device Software.

Note: If the BlackBerry device is running low on flash memory, the browser cache may be cleared to free up needed space. This can
result in content being cleared from the cache prior to the value specified in the Expires header.
69

BlackBerry Browser Version 4.2 Content Developer Guide
Additional push application features
Both RIM Push and PAP Push service implementations support the following tasks:

• Push submission result notification: Lets push application developers notify users that a push has arrived on
their device.

• Deliver-Before time stamp: Lets push application developers provide a time stamp before which the push is
required to be delivered. If a push is not successfully delivered by the specified time, the push is considered to
have failed.

Only the PAP push service implementation supports the following additional tasks:

• Deliver-After time stamp: Lets push application developers provide a time stamp before which the push must
not be delivered. If a push is not successfully delivered after the specified time, the push is considered to have
failed.

• Push cancellation: Lets push applications cancel a push submission that has already been sent.

• Push status query: Lets push applications check the status of a push submission.

WAP Browser configuration push support
For the WAP Browser, a WAP Push service record must be provisioned on the BlackBerry device to push data to the
device. WAP Push service records are usually sent to the device during registration.

Supported push methods
Server applications push content to the BlackBerry device using one of the following three methods:

• Existing WAP connections: This option is available only when a WAP connection is open between the device
and the WAP gateway.

• SMS messages: If an existing WAP connection is not available, the service record provisioned for the GPRS
and CDMA networks typically uses Short Message Service (SMS).

In addition, wireless service providers can restrict incoming SMS messages to specific sources. The source
address restrictions are specified as parameters in the WAP Push service record that is sent during
registration.

• UDP messages: If an existing WAP connection is not available, the service record provisioned for the iDEN
network typically uses UDP.

On the BlackBerry device, the WAP Push service record contains information about how the device can receive
WAP pushes. The service record also specifies on which ports the WAP Push Processor listens for incoming WAP
Push messages and how those incoming messages are managed.

Push message types
WAP Push accepts the following two message types:

• Service indications: These are self-contained messages with some text to inform the user about some event
or notification. The entire text of the message is included in the service indication that is pushed to the
BlackBerry device.
70

6: Creating browser push applications
• Service loadings: These messages contain a URL that points to the real content. The service loading message
is pushed to the BlackBerry device first, and then the browser automatically downloads content from the URL
location.

When a push message is successfully or unsuccessfully processed by the content-specific push handler, a push
completion notification is sent back to the push gateway.

By default, both service indication and service loading messages are managed by the browser automatically. Users
can change how incoming push messages are managed, or turn off the browser push feature in the browser
configuration properties.

The BlackBerry push process
1. The push application sends an HTTP POST request to the BlackBerry MDS Connection Service on the web

server listen port. The default port number is 8080 for the BlackBerry MDS Simulator and IBM Lotus Domino,
and 8300 for Microsoft Exchange.

2. The BlackBerry MDS Connection Service sends an acknowledgement to the push application.

3. The BlackBerry MDS Connection Service closes the connection.

4. The BlackBerry MDS Data Optimization Service converts the content of the request, if necessary, and sends it
to the BlackBerry Enterprise Server, which compresses and encrypts the content before sending it to the
specified BlackBerry devices.

5. The specified BlackBerry devices receive the pushed content. The browser listens on port 7874 to receive the
data.

6. The specified BlackBerry devices return an acknowledgement to the BlackBerry MDS Connection Service.

Defining push attributes
You must define two sets of attributes for a browser push:

• attributes that tell the BlackBerry MDS Connection Service what to push and to whom, the reliability level,
priority, delivery time stamps, and so on

• attributes that tell the browser what to do with the content once it arrives

BlackBerry MDS Connection Service push attributes
RIM and PAP push service implementations define push attributes (for example, reliability, priority, delivery time
stamps) in different ways:

• RIM push applications define push attributes using HTTP headers.

Note: System administrators set a Flow control timeout parameter for BlackBerry MDS Connection Service that defines the length of
time that the service waits for the BlackBerry device to return an acknowledgement before it deletes pending data.

The push application does not receive an error message if the pushed data does not reach the BlackBerry device.
71

BlackBerry Browser Version 4.2 Content Developer Guide
• PAP push applications include an XML document that specifies the control entity and the push content. The
control entity contains information about the destination device address, message ID, delivery time stamps,
and so on.

BlackBerry MDS Connection Service push attributes: RIM push application HTTP headers
Each pushed message can include the content (or a pointer to the content) and several attributes. Attributes are
encoded as HTTP headers.

The following headers can be included with a pushed message:

• X-Rim-Push-ID: unique_id

Specifies a string that uniquely identifies the message.

Typically, you should specify a URL with a value, such as 123@foo.rim.com.

• X-Rim-Push-Description: text_description

Specifies a string that provides a brief description of the push application.

• X-Rim-Push-Priority: high | medium | low | none

Specifies what kind of notification users receive when content is pushed to the device.

• High: The user is notified using the user-specified Browser Message Profile notification (for example, a
ring tone or vibration). In addition, an unread icon is added to the Home Screen, and a dialog box is
displayed, which states that a new push has been received.

• Medium: The user is notified using the user-specified Browser Message Profile notification (for example, a
ring tone or vibration) and an unread icon is added to the Home screen.

• Low: The user is notified using the user-specified Browser Message Profile notification (for example, a ring
tone or vibration) and an unread icon is added to the Home Screen.

• None: An unread icon is added to the Home Screen.

• X-Rim-Push-Reliability: transport | application | application-preferred

Specifies the delivery reliability level of the content.

• Transport: The default reliability level. Sends a message from the device acknowledging that the content
has arrived.

Transport-level acknowledgement is supported for all destination devices.

• Application: Sends an acknowledgement message from the device only when the content has reached
the intended client application.

Application-level acknowledgement is supported only by devices that are running BlackBerry Device
Software Version 4.0 or later.

• Application-Preferred: Sends application-level acknowledgement from devices that are running at
least BlackBerry Device Software Version 4.0 or later, and transport-level acknowledgement from devices
running earlier versions of the BlackBerry Device Software.

• X-Rim-Push-NotifyURL: valid_url

Specifies a URL to which a result notification is sent.
72

6: Creating browser push applications
• X-Rim-Push-Delete-URL: valid_url

Specifies a URL the the BlackBerry Browser retrieves when the user deletes the channel on his or her
BlackBerry device. The URL is not opened for the user to view; instead, this URL is retrieved in the background.
By retrieving the URL, the BlackBerry device notifies the push originator that the channel no longer exists on
the device.

When the browser retrieves the URL, it does not supply any parameters describing the the channel being
deleted. You must therefor add parameters to the URL so that you can uniquely identify the push when the
URL is requested.
X-Rim-Push-Delete-Url: http://myserver/deleteNotify.php?pushID=45&user=54

• X-Rim-Push-Deliver-Before: delivery_date

Specifies the date and time, in HTTP format, by which the content must be delivered to the device. Content
that has not been delivered before this date is not delivered.

• X-Rim-Push-Use-Coverage: true | false

Specifies a prompt to the BlackBerry MDS Connection Service to determine whether a target device is in
network coverage. If the target device is not in a wireless coverage area, the BlackBerry MDS Connection
Service will return the X-Rim-Device-State header with a value of false and close the push connection.
When the device returns to a wireless coverage area, the BlackBerry MDS Connection Service will notify the
push application, which can then resume the push process.

• true: The push application should attempt to push the content to the target device only if the target
device is in a wireless coverage area.

• false: The default value. The BlackBerry Connection Service should not query the connection status of
the target device.

• X-Rim-Transcode-Content: */* | none | list_of_mime_types

Specifies which types of pushed content the server should transcode.

• */*: The server transcodes all content.

• none: The server does not transcode any content.

• list-of-mime-types: The server transcodes content types in the given comma-separated list of MIME
types. For example:

X-Rim-Transcode-Content: image/png,image/jpeg, image/vnd.wap.wbmp

• Content-Location:content_url

Specifies a string that identifies the URL from which the content is downloaded, if the content is not included
in the push.

• Content-Type:list_of_mime_types

Specifies a comma-separated list of MIME types that can be included in the pushed content. For example:
Content-Type: image/png, image/jpeg, image/vnd.wap.wbmp

• Cache-Control: no-cache | max-age | must-revalidate

Specifies the caching parameters for the pushed content.
73

BlackBerry Browser Version 4.2 Content Developer Guide
• no-cache: The content is not cached.

• max-age: The time, in seconds, before cached content expires.

• must-revalidate: The page is always retrieved again, even when going back in the History list.

BlackBerry MDS Connection Service push attributes: PAP push application control
elements and attributes
The Push Access Protocol Specification identifies several messages and responses sent between the push initiator
(that is, the server-side push application) and the Push Proxy Gateway (that is, the BlackBerry MDS Connection
Service).

Your PAP push application can send one of the following messages to the BlackBerry MDS Connection Service:

• push message

• cancel message

• statusquery-message

See the Push Access Protocol (WAP-247-PAP-20010429-a) specification for more information about writing
server-side push applications using PAP. See the PAP 2.0 DTD for information about the WAP Push document type
definitions (DTDs).

PAP push message request
A push message request is sent from the push initiator to the BlackBerry MDS Connection Service, specifying the
destination devices to which the specified content is sent, as well as a unique message ID and the delivery
parameters.

A PAP push message request is a MIME multipart message, which consists of the following items:

• an XML document specifying the control entity

• the push content

The following is a sample push message XML control entity:

<pap>
<push-message push-id="123@foo.rim.com"

deliver-before-timestamp=”2006-08-08T17:00:00Z”
ppg-notify-requested-to="http://foo.rim.net/ReceiveNotify">

<address address-value=”WAPPUSH=john.doe%40rim.com%3A7874/TYPE=USER@rim.net” />
<address address-value=”WAPPUSH=jane.doe%40rim.com%3A7874/TYPE=USER@rim.net” />
<address address-value=”WAPPUSH=2100001A%40rim.com%3A7874/TYPE=USER@rim.net” />
<quality-of-service delivery-method="unconfirmed"/>

</push-message>
<pap>

Element name Type

<pap> Contains the push message elements.

Attributes:

• product-name=”application_name”

Identifies the name of the PAP push initiator.
74

6: Creating browser push applications
<push-message> Assigns a unique ID to a push message and defines a notification address and delivery parameters.

Attributes:

• push-id=”unique_id”

Specifies a string that uniquely identifies the message. You can use this ID to cancel or check the status of
a message.

Typically, you should specify a URL with a value, such as 123@foo.rim.com.

• ppg-notify-requested-to=”valid_url”

Specifies the URL to which the result notification message is sent.

• deliver-after-timestamp=”time_stamp”

Specifies the date and time after which the content must be delivered to the device. Content may not be
delivered prior to the specified date and time. The time stamp must be specified using the following
notation:

YYYY-MM-DDThh:mm:ssZ
Note: The Z parameter indicates that the time stamp uses Co-ordinated Universal Time (UTC).

• deliver-before-timestamp=”time_stamp”

Specifies the date and time by which the content must be delivered to the device. Content that has not been
sent by this date is not delivered.

The time stamp must be specified using the following notation:

YYYY-MM-DDThh:mm:ssZ
Note: The Z parameter indicates that the time stamp uses UTC.

<address> Specifies the address of the target device or group of devices. The <push-message> element can contain one
or more <address> elements.

Attributes:

• address-value=”valid_address”

Specifies a text string that represents the address of the target device or group of devices. PAP addresses
for BlackBerry devices have the following format:

WAPPUSH=destination_device%3Aport/TYPE=USER@rim.net
where destination_device represents the email address, PIN, or BlackBerry Group name of the target
devices; and port is the device port number that the application uses to listen for push requests. For
browser push applications, the port number is 7874.

Note: All non-alphanumeric characters in the device email address portion of the value, other than “+”, “-”,
“.”, and “_”, must be represented by their hexidecimal values. The “@” symbol, therefore, is represented by
the sequence “%40”, and the “:” symbol by “%3A”.

Element name Type
75

BlackBerry Browser Version 4.2 Content Developer Guide
PAP cancel message
A PAP cancel message cancels a message that the push initiator previously sent to the BlackBerry MDS
Connection Service.

The following is a sample cancel message XML control entity:
<pap>

<cancel-message push-id="123@foo.rim.com">
<address address-value=”WAPPUSH=john.doe%40rim.com%3A7874/TYPE=USER@rim.net” />
<address address-value=”WAPPUSH=jane.doe%40rim.com%3A7874/TYPE=USER@rim.net” />
<address address-value=”WAPPUSH=2100001A%40rim.com%3A7874/TYPE=USER@rim.net” />

</cancel-message>
</pap>

<quality-of-service> Specifies the address of the target device.

Attributes:

• delivery-method=“unconfirmed | confirmed | preferconfirmed”

Specifies the delivery reliability level of the message.

Note: This attribute does not imply any notification on the part of the BlackBerry MDS Connection Service
to the push initiator about the success or failure of delivery. For that, you must use the ppg-notify-
requested-to attribute of the <push-message> element.

• unconfirmed: Equivalent to transport-level acknowledgement.

The destination device sends a confirmation acknowledgement message to the BlackBerry MDS
Connection when all of the content has been delivered to the device.

• confirmed: Equivalent to application-level acknowledgement.

The destination device sends a confirmation acknowledgement message to the BlackBerry MDS
Connection Service only when the content is viewed in the browser application.

• preferconfirmed: If the destination device is running BlackBerry Device Software Version 4.0, it
sends a confirmation acknowledgement message to the BlackBerry MDS Connection Service when the
content is viewed in the browser application. If the device is running an earlier version of the BlackBerry
Device Software, it sends a confirmation acknowledgement message when all of the content has been
delivered to the device.

Element name Type

<pap> Contains the cancel message elements.

Attributes:

• product-name=”application_name”

Identifies the name of the PAP push initiator.

<cancel-message> Instructs the BlackBerry MDS Connection Service to cancel a specified message. If no address is specified, then
the BlackBerry MDS Connection Service cancels the push for all intended recipients.

Attributes:

• push-id=”unique_id”

Specifies string used as the push-id value of the message you want to cancel.

Element name Type
76

6: Creating browser push applications
PAP status query message
A PAP status query message requests the status of a message that the push initiator previously sent to the
BlackBerry MDS Connection Service.

The following is a sample status query message XML control entity:

<pap>
<statusquery-message push-id="123@foo.rim.com">

<address address-value=”WAPPUSH=john.doe%40rim.com%3A7874/TYPE=USER@rim.net” />
<address address-value=”WAPPUSH=2100001A%40rim.com%3A7874/TYPE=USER@rim.net” />

</statusquery-message>
</pap>

<address> Specifies the address of the target device or group of devices. The <cancel-message> element can contain
one or more <address> elements.

Attributes:

• address-value=”valid_address”

Specifies a text string that represents the address of the target device or group of devices. PAP addresses
for BlackBerry devices have the following format:

WAPPUSH=destination_device%3Aport/TYPE=USER@rim.net
where destination_device represents the email address, PIN, or BlackBerry Group name of the target
devices; and port is the device port number that the application uses to listen for push requests. For
browser push applications, the port number is 7874.

Note: All non-alphanumeric characters in the device email address portion of the value, other than “+”, “-”,
“.”, and “_”, must be represented by their hexidecimal values. The “@” symbol, therefore, is represented by
the sequence “%40”, and the “:” symbol by “%3A”.

Element name Type

<pap> Contains the status query message elements.

Attributes:

• product-name=”application_name”

Identifies the name of the PAP push initiator.

<statusquery-message> Requests the status of a previously pushed message.

Attributes:

• push-id=”unique_id”

Specifies the string used as the push-id value of the message you want to query.

Element name Type
77

BlackBerry Browser Version 4.2 Content Developer Guide
BlackBerry MDS Connection Service push attributes: PAP push HTTP header
A single header is used to route the push message through the BlackBerry MDS Connection Service.

• X-Wap-Application-Id: unique_id

A header that specifies the application though which the push is being routed. For pushes routed through the
BlackBerry MDS Connection Service, this value is “/”.

Browser push HTTP headers
Browser push applications use several RIM proprietary HTTP headers that are included with the pushed content to
inform the browser how to manage the content once it arrives on the device.

The following headers can be included with a pushed message. The BlackBerry MDS Connection Service passes
these HTTP headers to the browser.

• X-Rim-Push-Title: descriptive_title

Specifies a text string that is used to identify the push application on the Home Screen, in the message list, or
in the browser bookmarks.

• X-Rim-Push-Type: browser-message | browser-content | browser-channel | browser-channel-delete

Specifies the destination of the pushed content once it is delivered to the browser.

• browser-message: Pushes content to the message list, where the message is identified as a browser
message.

• browser-content: Pushes content directly to the browser’s content cache. The next time that the user
visits the specified URL, the browser retrieves the updated content from the cache.

• browser-channel: Pushes content to the Home Screen, where it is added as an icon. When clicked, the
icon opens the browser, which displays the pushed content. If you specify this option, you must also

<address> Specifies the address of the target device or group of devices. The <cancel-message> element can contain
one or more <address> elements.

Attributes:

• address-value=”valid_address”

Specifies a text string that represents the address of the target device or a group of devices. PAP addresses
for BlackBerry devices have the following format:

WAPPUSH=destination_device%3Aport/TYPE=USER@rim.net
where destination_device represents the email address, PIN, or BlackBerry Group name of the target
devices; and port is the device port number that the application uses to listen for push requests. For
browser push applications, the port number is 7874.

Note: All non-alphanumeric characters in the device email address portion of the value, other than “+”,
“-”, “.”, and “_”, must be represented by their hexidecimal values. The “@” symbol, therefore, is
represented by the sequence “%40”, and the “:” symbol by “%3A”.

Note: In a PAP push, these headers must be included in the content portion of the pushed multipart message.

Element name Type
78

6: Creating browser push applications
specify a channel ID using the X-Rim-Channel-ID header. If the given channel ID already exists, that
channel is updated with the new content.

• browser-channel-delete: Deletes a channel. If you specify this option, you must also specify a channel
ID using the X-Rim-Channel-ID header. The browser deletes the channel with the given channel ID.

• X-Rim-Push-Channel-ID: unique_id

Specifies a string that uniquely identifies a new or existing channel.

• X-Rim-Push-Read-Icon-URL: image_url

Specifies the URL of the icon image that is used to identify the push application.

• X-Rim-Push-Ribbon-Position: position_number

Specifies an integer that defines the position of the channel push icon on the device Home Screen.

RIM push service implementation
The RIM push service implementation sends the push content as a byte stream to the destination user and port
number that is specified in the URL of the push message. RIM push applications use HTTP headers to define the
attributes of the application, such as

• the push type (channel, message, or cache)

• a unique identifier for the application

• the location and names of the images used as icons

• the priority of the push

• the reliability level of the push

If the BlackBerry Enterprise Server is configured to do so, all push data is stored in the BlackBerry Enterprise
Server databases. Otherwise, it is stored in the RAM of the BlackBerry MDS Connection Service server.

Writing a RIM push service application
The following is a simple example of a PHP application that pushes a web page to a BlackBerry device. The
example relies on an HTML form that supplies the required push information (index.html). This is a basic HTML
form and will not be discussed in the example, but it is included as part of the code sample. See “Code sample:
Creating a browser push application using the RIM push service implementation” on page 81 for more
information.

Create the PHP application
1. Create the URL that the request will be posted to. This can be the email address or BlackBerry PIN of the user

to deliver the push to. The BlackBerry device listens to incoming push requests on port 7874.

$path = "/push?DESTINATION=" . $HTTP_POST_VARS['email'] . "&PORT=7874&REQUESTURI=/";

2. Open a socket connection to the BlackBerry MDS Connection Server. For this sample, the user supplies the
server hostname and port number in the HTML form.
79

BlackBerry Browser Version 4.2 Content Developer Guide
$besfs = @fsockopen($HTTP_POST_VARS['besHostname'], $HTTP_POST_VARS['besPort'],
$errno, $errstr,30);

3. Begin sending header properties for the push. For this sample, the user supplies the URL of the page to be
pushed, the push title, and the push type in the HTML form.

fputs($besfs, "POST $path HTTP/1.0\r\n");

fputs($besfs, "Host: " . $HTTP_POST_VARS['besHostname'] . "\r\n");

fputs($besfs, "Content-Location: . $HTTP_POST_VARS['pushURL'] . "\r\n");

fputs($besfs, "X-RIM-Push-Title: " . $HTTP_POST_VARS['pushTitle'] . "\r\n");

fputs($besfs, "X-RIM-Push-Type: " . $HTTP_POST_VARS['pushType'] . "\r\n");

4. If the Browser Push is a Browser-Channel or Browser-Channel-Delete push, you must specify the
“X-RIM-Push-Channel-ID” header property. If a Browser Push is being sent, the URL of the of the read and
unread icons can be specified. If no URL is specified, default device icons will be used.

if ($HTTP_POST_VARS['pushType'] == "Browser-Channel" || $HTTP_POST_VARS['pushType']
== "Browser-Channel-Delete")

{
fputs($besfs, "X-RIM-Push-Channel-ID: " . $HTTP_POST_VARS['pushURL'] . "\r\n");

//Send the push icon URL if we are using
//a browser channel push.
if($HTTP_POST_VARS['pushType'] == "Browser-Channel")
{

fputs($besfs, "X-RIM-Push-Read-Icon-URL: " . $HTTP_POST_VARS['readIconURL']
. "\r\n");

}
}

5. Send the web page to the client. This is not required when sending a Browser-Channel-Delete.

$webURL = parse_url($HTTP_POST_VARS['pushURL']);

//Set the port to 80 if not otherwise specified
//in the push URL.
if (empty($webURL['port']))

$port = 80;
else

$port = $webURL['port'];

//Open a socket connection to the webserver
//hosting the page to push.
$webfs = @fsockopen($webURL['host'], $port, $errno, $errstr, 30);
fputs($webfs, "GET " . $webURL['path'] . " HTTP/1.1\r\n");
fputs($webfs, "Host: " . $webURL['host'] . "\r\n");
fputs($webfs, "Connection: Close\r\n\r\n");

//Read and discard the first line from the
//webserver (should be HTTP/1.1 200 OK).
fgets($webfs);
80

6: Creating browser push applications
//Read in the page to push from the web server
//and write it out to the MDS server.
while (!feof($webfs))
{

fputs($besfs, fgets($webfs));
}
//Close the connection to the web server.
fclose($webfs);

6. If the push is a Browser-Channel-Delete, you must specify two additional header properties: Content-length
and Connection: Close. If you are performing a Browser-Channel, Browser-Message, or Browser-Content
Push, the web server provides these properties.

if ($HTTP_POST_VARS['pushType'] == "Browser-Channel-Delete")
{

//No content to send when performing a
//Browser Channel Delete Push.
fputs($besfs, "Content-length: 0\r\n");
fputs($besfs, "Connection: Close\r\n\r\n");

}

7. Send the output from the BlackBerry MDS Connection Service to the client. A response code of 200 indicates
a successful push.

$buf = "";
//Capture the BlackBerry MDS Connection Service’s reply to the push.
while (!feof($besfs))

$buf .= fgets($besfs,128);

8. Close the connection.

fclose($besfs);
//Display the BlackBerry MDS Connection Service's reply.
echo "Response from MDS:
";
echo $buf;

Set up and test the example
To run this push application, simply place the .php file and the HTML form on a PHP-enabled web server and open
it in your browser.

In the BlackBerry Device Simulator, the icon that is specified in the unreadIconUrl property appears on the
device Home screen. To view the web page that is specified in the pushUrlString property, click the icon.

Code sample: Creating a browser push application using the RIM push service
implementation
This section includes the complete samples for the following files:

• phpRIMPush.php: Pushes the content to the BlackBerry device.

• index.html: Collects the parameters for phpRimPush.php

Example: phpRIMPush.php

<html>
81

BlackBerry Browser Version 4.2 Content Developer Guide
<title>Push Results</title>
<body>
<?

//Ensure all required variables have been filled in.
if (!@empty($HTTP_POST_VARS['besHostname']) || !@empty($HTTP_POST_VARS['email'])

|| !@empty($HTTP_POST_VARS['pushURL']) || !@empty($HTTP_POST_VARS['pushType'])
|| !@empty($HTTP_POST_VARS['pushTitle']))

{

//Ensure that the MDS Push port is numeric.
if(!is_numeric($HTTP_POST_VARS['besPort']))
{

echo "Error! MDS Push Port must be numeric!";
}
else
{

//Create the push URL.
$path = "/push?DESTINATION=" . $HTTP_POST_VARS['email'] . "&PORT=7874&REQUESTURI=/";

//Open a socket connection to the MDS Server.
if ($besfs = @fsockopen($HTTP_POST_VARS['besHostname'], $HTTP_POST_VARS['besPort'],

$errno, $errstr, 30))
{

fputs($besfs, "POST $path HTTP/1.0\r\n");
fputs($besfs, "Host: " . $HTTP_POST_VARS['besHostname'] . "\r\n");
fputs($besfs, "Content-Location: " . $HTTP_POST_VARS['pushURL'] . "\r\n");
fputs($besfs, "X-RIM-Push-Title: " . $HTTP_POST_VARS['pushTitle'] . "\r\n");
fputs($besfs, "X-RIM-Push-Type: " . $HTTP_POST_VARS['pushType'] . "\r\n");

//Send the push URL if we are using a browser channel or browser channel delete.
if ($HTTP_POST_VARS['pushType'] == "Browser-Channel" ||

$HTTP_POST_VARS['pushType'] == "Browser-Channel-Delete")
{

fputs($besfs, "X-RIM-Push-Channel-ID: " . $HTTP_POST_VARS['pushURL'] .
"\r\n");

//Send the push icon URLs if we are using a browser channel push.
if($HTTP_POST_VARS['pushType'] == "Browser-Channel")
{

fputs($besfs, "X-RIM-Push-UnRead-Icon-URL: " .
$HTTP_POST_VARS['unreadIconURL'] . "\r\n");

fputs($besfs, "X-RIM-Push-Read-Icon-URL: " .
$HTTP_POST_VARS['readIconURL'] . "\r\n");

}
}

$keepGoing = true;

// No need to connect to the pushed page for a delete.
if ($HTTP_POST_VARS['pushType'] != "Browser-Channel-Delete")
{

$webURL = parse_url($HTTP_POST_VARS['pushURL']);

//Set the port to 80 if not otherwise specified in the push URL.
if (empty($webURL['port']))
82

6: Creating browser push applications
$port = 80;
else

$port = $webURL['port'];

//Open a socket connection to the web server hosting the page to push.
if ($webfs = @fsockopen($webURL['host'], $port, $errno, $errstr, 30))
{

fputs($webfs, "GET " . $webURL['path'] . " HTTP/1.1\r\n");
fputs($webfs, "Host: " . $webURL['host'] . "\r\n");
fputs($webfs, "Connection: Close\r\n\r\n");

//Read and discard the first line from the web server (should be HTTP/1.1
200 OK).

fgets($webfs);

//Read in the page to push from the web server and write it out to the
BlackBerry MDS Connection Service.

while (!feof($webfs))
{

fputs($besfs, fgets($webfs));
}

//Close the connection to the web server.
fclose($webfs);

}
else
{

echo "Failed to connect to " . $HTTP_POST_VARS['pushURL'] . "
";
echo "Error: " . $errno . " " .$errstr;

$keepGoing = false;
}

}
else
{

//No content to send when performing a Browser Channel Delete Push.
fputs($besfs, "Content-length: 0\r\n");
fputs($besfs, "Connection: Close\r\n\r\n");

}

//If we didn't fail connecting to the web server, lets keep going!
if ($keepGoing)
{

$buf = "";

//Capture the BlackBerry MDS Connection Service's reply to the push.
while (!feof($besfs))

$buf .= fgets($besfs,128);
fclose($besfs);

//Display the BlackBerry MDS Connection Service's reply.
echo "Response from MDS:
";
echo $buf;

}
else
{

//Close the connection to the BlackBerry MDS Connection Service.
fclose($besfs);
83

BlackBerry Browser Version 4.2 Content Developer Guide
}
}
else
{

echo "Failed to connect to " . $HTTP_POST_VARS['besHostname'] . " using port "
.$HTTP_POST_VARS['besPort'] . "
";

echo "Error: " . $errno . " " .$errstr;
}

}
}
else
{

echo "Error! Required fields were empty. Please try again.";
}

?>
</body>
</html>

Example: index.html

<html>
<title>Test Push Application</title>
<body>
<form name="phpPush" method="post" action="phpPush.php">
<h2>Sample php Browser Push</h2>
<table border="0">

<tr>
<td>BlackBerry Enterprise Server Name/IP Address:</td>
<td><input type="text" name="besHostname" size="27"></td>

</tr>
<tr>

<td>BlackBerry MDS Connection Service Push Port:</td>
<td><input type="text" name="besPort" size="50"></td>

</tr>
<tr>

<td>Push Recipient's Email Address:</td>
<td><input type="text" name="email" size="50"></td>

</tr>
<tr>

<td>Push URL (file to be pushed):</td>
<td><input type="text" name="pushURL" size="50" value="http://localhost/phpPush/

testpage/sample.html"></td>
</tr>
<tr>

<td>Push Type:</td>
<td><select name="pushType">

<option>Browser-Channel</option>
<option>Browser-Message</option>
<option>Browser-Content</option>
<option>Browser-Channel-Delete</option>

</select></td>
</tr>
<tr>

<td>Push Title:</td>
<td><input type="text" name="pushTitle" size="50" value="Test Push"></td>
84

6: Creating browser push applications
</tr>
<tr>

<td>Unread Icon URL (optional):</td>
<td><input type="text" name="unreadIconURL" size="50" value="http://localhost/

phpPush/testpage/smile_unread.png"></td>
</tr>
<tr>

<td>Read Icon URL (optional):</td>
<td><input type="text" name="readIconURL" size="50" value="http://localhost/

phpPush/testpage/smile.png"></td>
</tr>
<tr>

<td colspan="2"> </td>
</tr>
<tr>

<td></td>
<td align="right"><input type="submit" name="submit" value="Send Push!"></td>

</tr>
</table>
</form>
</body>
</html>

PAP push service implementation
To push data to devices using PAP, send an HTTP POST request to the BlackBerry MDS Connection Service using
the following format

/push?DESTINATION=destination&PORT=port&REQUESTURI=/pap

where

• destination is the URL of the BlackBerry MDS Connection Service

• port is the web server listen port. The default port number is 8080 for the BlackBerry MDS Simulator and IBM
Lotus Domino, and 8300 for Microsoft Exchange

The request is a MIME multipart message, which consists of the following items:

• an XML document specifying the control entity

• the push content

For example, the control entity might contain information for the device address, message ID, and delivery time
stamps.

See the Push Access Protocol (WAP-247-PAP-20010429-a) specification for more information about writing
server-side push applications using PAP. See the PAP 2.0 DTD for information about the WAP Push DTDs.

Writing a PAP push service application
This section demonstrates how to write a push application that uses the PAP push service implementation to
create an icon on the device Home Screen.
85

BlackBerry Browser Version 4.2 Content Developer Guide
See “Code sample: Creating a browser push application using the PAP push service implementation” on page 90
for the complete code sample, as well as complete samples of the properties file and all the XML control entities
used for this example.

Write a push method
1. Define a method that accepts the required parameters for a channel push.

public static void pushPage(String mdsHostName, int mdsPort, String email,
String pushUrlString, String pushType, String pushTitle,
String unreadIconUrl, String readIconUrl,
String pushReliability, String notifyUrl,
String PushId) {

2. Define variables for connections to the BlackBerry MDS Connection Service.
HttpURLConnection mdsConn;
URL mdsUrl;

3. Create the connection to the BlackBerry MDS Connection Service by invoking the openConnection method
on the URL. The push listener thread on the device listens on port 7874.

mdsUrl = new URL("http", mdsHostName, mdsPort, "/pap");
mdsConn = (HttpURLConnection)mdsUrl.openConnection();

4. Set additional header properties for the push.

try {
String protocol = "http";
if (useHttps == true) {

protocol += "s";
}
mdsUrl = new URL(protocol, mdsHostName, mdsPort, "/pap");
mdsConn = (HttpURLConnection)mdsUrl.openConnection();
if ((user != null) && (password != null)) {

String authString = user + ":" + password;
mdsConn.setRequestProperty("Authorization", "Basic " + new

BASE64Encoder().encode(authString.getBytes()));
}
String boundary = "";
if ((command == 'p') || (command == 'r')) {

boundary = "asdlfkjiurwghasf";
mdsConn.setRequestProperty("Content-Type", "multipart/related;

type=\"application/xml\"; boundary=" + boundary);
mdsConn.setRequestProperty("X-Wap-Application-Id", "/");
mdsConn.setRequestProperty("X-Rim-Push-Dest-Port", "7874");

}
else {

mdsConn.setRequestProperty("Content-Type", "application/xml");
}

mdsConn.setRequestProperty("Content-Location", pushUrlString);
mdsConn.setRequestProperty("X-RIM-Push-Title", pushTitle);
mdsConn.setRequestProperty("X-RIM-Push-Type", pushType);
if (pushType.equals(CHANNEL) || pushType.equals(CHANNEL_DELETE)) {

mdsConn.setRequestProperty("X-RIM-Push-Channel-ID", pushUrlString);
if (pushType.equals(CHANNEL)) {

mdsConn.setRequestProperty("X-RIM-Push-UnRead-Icon-URL", unreadIconUrl);
mdsConn.setRequestProperty("X-RIM-Push-Read-Icon-URL", readIconUrl);
86

6: Creating browser push applications
}
}

try {
mdsConn.setRequestMethod("POST");

} catch (ProtocolException e) {
throw new RuntimeException("problems setting request method: " +

e.getMessage());
}

mdsConn.setAllowUserInteraction(false);
mdsConn.setDoInput(true);

5. Open the connection to the BlackBerry MDS Connection Service.

mdsConn.connect();
...

6. Retrieve the response code that the BlackBerry MDS Connection Service returns . Display a status message.

int rescode = mdsConn.getResponseCode();
if (rescode != HttpURLConnection.HTTP_OK) {

throw new RuntimeException("Cannot push data, received bad response code
from Mobile Data Service: " + rescode);

}
System.out.println("Pushed page to the device");

Create a method to retrieve the content
1. Define a method that accepts the parameters that are required to define the push content.

private static String[] getContent(String pushUrlString, String pushType, String
pushTitle, String unreadIconUrl, String readIconUrl) {

2. Define variables for connections to two URLs: one to the server with the content and one to the BlackBerry
MDS Connection Service.

HttpURLConnection pushConn = null;
URL pushUrl;

3. Invoke the openConnection method on the URL to connect to the content server.

StringBuffer contentHeaders = new StringBuffer();
try {

pushUrl = new URL(pushUrlString);
 } catch (MalformedURLException e) {

throw new RuntimeException("invalid push URL: " + e.getMessage());
}
pushConn = (HttpURLConnection)pushUrl.openConnection();

4. Set properties for the HTTP GET request to the content server.

pushConn.setAllowUserInteraction(false);
pushConn.setDoInput(true);
pushConn.setDoOutput(false);
pushConn.setRequestMethod("GET");

5. Open the connection to the content server.

pushConn.connect();
87

BlackBerry Browser Version 4.2 Content Developer Guide
6. Set properties for the HTTP POST request to the BlackBerry MDS Connection Service. Copy the header
properties from the GET request. Set additional properties for the push.

String name, value;
for (int i = 0; true; i++) {

name = pushConn.getHeaderFieldKey(i);
value = pushConn.getHeaderField(i);
if ((name ==null) && (value == null)) { break; }
if ((name ==null) || (value == null)) { continue; }
if (name.equals("X-RIM-Push-Type")) { continue; }
if (name.equals("Transfer-Encoding")) { continue; }
contentHeaders.append("\r\n").append(name).append(": ").append(value);

}
content[0] = contentHeaders.toString();

7. Read content from the content server connection. Write it to the BlackBerry MDS Connection Service
connection.

InputStream ins = pushConn.getInputStream();
ByteArrayOutputStream bouts = new ByteArrayOutputStream();
copyStreams(ins, bouts);
ins.close();
content[1] = new String(bouts.toByteArray());

return content;

Create a method that reads a property file and pushes the page
1. Define the method that accepts an array of arguments that includes the PAP command and PushID.

public static void main(String[] args) {

2. Configure the method to send a different XML file based on the PAP command issued.

char command = args[0].charAt(0);
String papFilename;
switch (command)
{

case 'p':
papFilename = "pap_push.txt";
break;

case 's':
papFilename = "pap_status.txt";
break;

case 'c':
papFilename = "pap_cancel.txt";
break;

case 'r':
papFilename = "pap_replace.txt";
break;

default:
System.out.println("invalid command");
return;

Tip: This step is optional for applications that use the channel or message push methods. If you do not push content to the
BlackBerry device, the browser retrieves the content when the user requests it.

If you are pushing content to many users, copy the content to a temporary file to avoid multiple requests to the content
server.
88

6: Creating browser push applications
}

3. Read values from a property file.
Properties prop = new Properties();
try {

prop.load(new FileInputStream(PROPERTIES_FILE));
} catch (FileNotFoundException fnfe) {

throw new RuntimeException("property file not found: " + fnfe.getMessage());
} catch (IOException ioe) {

throw new RuntimeException("problems reading property file: " +
ioe.getMessage());

}

String mdsHostName = prop.getProperty("mdsHostName").trim();
int mdsPort = (new Integer(prop.getProperty("mdsPort").trim())).intValue();
String pushUrlString = prop.getProperty("pushUrlString").trim();
String pushType = prop.getProperty("pushType", CHANNEL).trim();
String pushTitle = prop.getProperty("pushTitle", "Push Page").trim();
String unreadIconUrl = prop.getProperty("unreadIconUrl", "").trim();
String readIconUrl = prop.getProperty("readIconUrl", "").trim();
String user = prop.getProperty("user");
String password = prop.getProperty("password");

boolean useHttps = false;
try {

useHttps = Boolean.valueOf(prop.getProperty("useHttps")).booleanValue();
} catch (Exception e) { }

if (useHttps == true) {
System.setProperty("javax.net.ssl.trustStore",

"C:\\p4\\main\\IPProxyProject\\webserver\\webserver.keystore");
System.setProperty("javax.net.ssl.trustStorePassword", "password");

}

String pushId = args[1];

String replaceId = "";
if (command == 'r') {

System.out.print("Enter push id to replace: ");
replaceId = (new BufferedReader(new

InputStreamReader(System.in))).readLine().trim();
}

4. To retrieve the content, invoke the getContent method that you created in “Create a method to retrieve the
content” on page 87.

String[] content = null;
if ((command == 'p') || (command == 'r')) {

content = getContent(pushUrlString, pushType, pushTitle, unreadIconUrl,
readIconUrl);

}

5. Invoke the pushPage method that you created in “Write a push method” on page 86.

pushPage(command, pushId, replaceId, papFilename, mdsHostName, mdsPort, pushType,
user, password, useHttps, content);
89

BlackBerry Browser Version 4.2 Content Developer Guide
Set up and test the example
1. Create the XML portion of the PAP push messages. You need to create an XML file for each of the following

PAP push commands:

• push content (see “pap_push.txt” on page 97 for more information).

• replace content (see “pap_replace.txt” on page 97 for more information).

• push cancellation (see “pap_cancel.txt” on page 98 for more information).

• query push status (see “pap_status.txt” on page 98 for more information).

2. Deploy the web content and the push icons that you want to push to devices on a web application server.

3. Place the BrowserChannelPush.java, pappush_browserpush.properties, pap_push.txt, pap_replace.txt,
pap_status.txt, and pap_cancel.txt files into a com\rim\docs\samples\browserpushdemo folder that is in
your CLASSPATH.

4. Edit the pap_browserpush.properties file to specify the location and names of the files to push to the device.

5. Start the BlackBerry MDS Simulator and the BlackBerry Device Simulator.

6. Turn on push functionality on the BlackBerry Device Simulator.

7. Compile and run the Java file.

In the BlackBerry Device Simulator, the icon that is specified in the unreadIconUrl property appears on the
device Home screen. Click the icon to view the web page that is specified in the pushUrlString property.

Delete the channel
If necessary, delete the channel.

1. Edit the pappush_browserpush.properties file.

2. Change the pushType parameter to pushType = Browser-Channel-Delete.

3. Compile and run BrowserChannelPush.java again.

Note: In the sample pap_push.txt and pap_replace.txt files, you will need to change all <address> elements to
reflect the desired recipient addresses.

Recipient addresses conform to WAP-PAP 2.0 addressing standards and have the following format:

WAPPUSH=<email_or_PIN>%3A<port_number>/TYPE=USER@rim.net

where <email_or_PIN> is the email address or the PIN of the client and <port_number> is the client port number to
which the message is pushed.

All non-alphanumeric characters other than the plus sign (+), the minus sign (-), the period (.), and the underscore
(_) in <email_or_PIN> must be represented by %<n>, where <n> is the two-digit hexadecimal number representing
the character (for example, %3A represents the colon (:) symbol, while %40 represents the at symbol (@)).

For example, for a push to a BlackBerry device with an email address of john.doe@acme.com to the port 4567, the
PAP message specifies the address:

WAPPUSH=john.doe%40acme.com%3A4567/TYPE=USER@rim.net
90

6: Creating browser push applications
Code sample: Creating a browser push application using the PAP push service
implementation
This section includes the complete samples for the following files:

• BrowserPAPPushDemo.java: Pushes the content to the BlackBerry device.

• pap_browserpush.properties file: A text file that contains the push type, the URL of the push content and
icon, and the BlackBerry MDS Connection Service port.

• pap_push.txt: The XML control entity used to send content to the browser or browser channel.

• pap_replace.txt: The XML control entity used to replace an existing channel.

• pap_cancel.txt: The XML control entity used to cancel a push request.

• pap_status.txt: The XML control entity used for a status query request.

Example: BrowserPAPPushDemo.java

/*
 * BrowserPushDemo.java
 * Copyright (C) 2004 Reasearch In Motion Limited. All rights reserved.
 * PAP Push properties file
 */
// package com.rim.samples.server.browserpushdemo;

import java.io.*;
import java.net.*;
import java.text.*;
import java.util.*;
import javax.net.ssl.*;
import sun.misc.BASE64Encoder;

/**
 * Application which pushes a specified web page to a specified device.
 */
public class BrowserPushDemo {

public static final String CHANNEL = "Browser-Channel";
public static final String MESSAGE = "Browser-Message";
public static final String CONTENT = "Browser-Content";
public static final String CHANNEL_DELETE = "Browser-Channel-Delete";
private static final String PROPERTIES_FILE = "browserpush.properties";

public BrowserPushDemo() { }

/**
* Main method which reads the property file and performs the push.
*/

public static void main(String[] args) {

// Set cases for each potential pap command.
char command = args[0].charAt(0);
String papFilename;
switch (command)
91

BlackBerry Browser Version 4.2 Content Developer Guide
{
case 'p':

papFilename = "pap_push.txt";
break;

case 's':
papFilename = "pap_status.txt";
break;

case 'c':
papFilename = "pap_cancel.txt";
break;

case 'r':
papFilename = "pap_replace.txt";
break;

default:
System.out.println("invalid command");
return;

}

// Load the properties file.
Properties prop = new Properties();
try {

prop.load(new FileInputStream(PROPERTIES_FILE));
} catch (FileNotFoundException fnfe) {

throw new RuntimeException("property file not found: " + fnfe.getMessage());
} catch (IOException ioe) {

throw new RuntimeException("problems reading property file: " + ioe.getMessage());
}

// Hostname and Port of the BlackBerry MDS Connection Service that will perform the
push.

String mdsHostName = prop.getProperty("mdsHostName").trim();
int mdsPort = (new Integer(prop.getProperty("mdsPort").trim())).intValue();

// The URL of the page to push.
String pushUrlString = prop.getProperty("pushUrlString").trim();
String pushType = prop.getProperty("pushType", CHANNEL).trim();
String pushTitle = prop.getProperty("pushTitle", "Push Page").trim();

// URLs of the icons to use for Browser-Channel push type.
String unreadIconUrl = prop.getProperty("unreadIconUrl", "").trim();
String readIconUrl = prop.getProperty("readIconUrl", "").trim();

//Authentication properties.
String user = prop.getProperty("user");
String password = prop.getProperty("password");

// Push security?
boolean useHttps = false;
try {

useHttps = Boolean.valueOf(prop.getProperty("useHttps")).booleanValue();
} catch (Exception e) { }

if (useHttps == true) {
System.setProperty("javax.net.ssl.trustStore",

"C:\\p4\\main\\IPProxyProject\\webserver\\webserver.keystore");
System.setProperty("javax.net.ssl.trustStorePassword", "password");

}

92

6: Creating browser push applications
String pushId = args[1];

String replaceId = "";
if (command == 'r') {

System.out.print("Enter push id to replace: ");
replaceId = (new BufferedReader(new

InputStreamReader(System.in))).readLine().trim();
}

String[] content = null;
if ((command == 'p') || (command == 'r')) {

content = getContent(pushUrlString, pushType, pushTitle, unreadIconUrl,
readIconUrl);

}
// Push the page to the device.
int iterations = Integer.parseInt(prop.getProperty("iterations", "1"));
int delay = Integer.parseInt(prop.getProperty("delay", "5"));
String pushIdBase = pushId;
for (int i = 0 ; i < iterations; i++) {

if (i > 0) {
Thread.sleep(delay);

}
if (iterations > 1) {

pushId = pushIdBase + "_" + i;
}
pushPage(command, pushId, replaceId, papFilename, mdsHostName, mdsPort, pushType,

user, password, useHttps, content);
}

}

/*
 * A method used to set the push connection and pass push content to
 * the BlackBerry MDS Connection Service.
 */
private static String[] getContent(String pushUrlString, String pushType, String

pushTitle, String unreadIconUrl, String readIconUrl) {
String[] content = new String[2];
HttpURLConnection pushConn = null;
URL pushUrl;
StringBuffer contentHeaders = new StringBuffer();
try {

pushUrl = new URL(pushUrlString);
 } catch (MalformedURLException e) {

throw new RuntimeException("invalid push URL: " + e.getMessage());
}
pushConn = (HttpURLConnection)pushUrl.openConnection();

 pushConn.setAllowUserInteraction(false);
 pushConn.setDoInput(true);
 pushConn.setDoOutput(false);
 pushConn.setRequestMethod("GET");

pushConn.connect();

contentHeaders.append("Content-Location: ").append(pushUrlString);
contentHeaders.append("\r\nX-RIM-Push-Title: ").append(pushTitle);
contentHeaders.append("\r\nX-RIM-Push-Type: ").append(pushType);

if (pushType.equals(CHANNEL) || pushType.equals(CHANNEL_DELETE)) {
93

BlackBerry Browser Version 4.2 Content Developer Guide
contentHeaders.append("\r\nX-RIM-Push-Channel-ID: ").append(pushUrlString);
if (pushType.equals(CHANNEL)) {

contentHeaders.append("\r\nX-RIM-Push-UnRead-Icon-URL: ").append(unreadIconUrl);
contentHeaders.append("\r\nX-RIM-Push-Read-Icon-URL: ").append(readIconUrl);

}
}

/*
 * Read the header properties from the push connection and write
 * them to the BlackBerry MDS Connection Service connection.
 */
String name, value;
for (int i = 0; true; i++) {

name = pushConn.getHeaderFieldKey(i);
value = pushConn.getHeaderField(i);
if ((name ==null) && (value == null)) { break; }
if ((name ==null) || (value == null)) { continue; }
if (name.equals("X-RIM-Push-Type")) { continue; }
if (name.equals("Transfer-Encoding")) { continue; }
contentHeaders.append("\r\n").append(name).append(": ").append(value);

}
content[0] = contentHeaders.toString();

/*
 * Read content from the push connection and write them to the
 * BlackBerry MDS Connection Service connection.
 */
InputStream ins = pushConn.getInputStream();
ByteArrayOutputStream bouts = new ByteArrayOutputStream();
copyStreams(ins, bouts);
ins.close();
content[1] = new String(bouts.toByteArray());

return content;

}

public static void pushPage(char command, String pushId, String replaceId, String filename,

String mdsHostName, int mdsPort, String pushType, String user, String
password, boolean useHttps, String[] content) {

HttpURLConnection mdsConn;
URL mdsUrl;

try {
/* Push listener thread on the device listens to port 7874 for pushes from

the BlackBerry MDS Connection Service. */
String protocol = "http";
if (useHttps == true) {

protocol += "s";
}
mdsUrl = new URL(protocol, mdsHostName, mdsPort, "/pap");
mdsConn = (HttpURLConnection)mdsUrl.openConnection();
if ((user != null) && (password != null)) {

String authString = user + ":" + password;
mdsConn.setRequestProperty("Authorization", "Basic " + new

BASE64Encoder().encode(authString.getBytes()));
}
String boundary = "";
94

6: Creating browser push applications
if ((command == 'p') || (command == 'r')) {
boundary = "asdlfkjiurwghasf";
mdsConn.setRequestProperty("Content-Type", "multipart/related;

type=\"application/xml\"; boundary=" + boundary);
mdsConn.setRequestProperty("X-Wap-Application-Id", "/");
mdsConn.setRequestProperty("X-Rim-Push-Dest-Port", "7874");

}
else {

mdsConn.setRequestProperty("Content-Type", "application/xml");
}

mdsConn.setRequestProperty("Content-Location", pushUrlString);
mdsConn.setRequestProperty("X-RIM-Push-Title", pushTitle);
mdsConn.setRequestProperty("X-RIM-Push-Type", pushType);
if (pushType.equals(CHANNEL) || pushType.equals(CHANNEL_DELETE)) {

mdsConn.setRequestProperty("X-RIM-Push-Channel-ID", pushUrlString);
if (pushType.equals(CHANNEL)) {

mdsConn.setRequestProperty("X-RIM-Push-UnRead-Icon-URL", unreadIconUrl);
mdsConn.setRequestProperty("X-RIM-Push-Read-Icon-URL", readIconUrl);

}
}

try {
mdsConn.setRequestMethod("POST");

} catch (ProtocolException e) {
throw new RuntimeException("problems setting request method: " +

e.getMessage());
}

mdsConn.setAllowUserInteraction(false);
mdsConn.setDoInput(true);
if (!pushType.equals(CHANNEL_DELETE)) {

mdsConn.setDoOutput(true);
OutputStream outs = mdsConn.getOutputStream();
InputStream ins = new BufferedInputStream(new FileInputStream(filename));
ByteArrayOutputStream bouts = new ByteArrayOutputStream();
copyStreams(ins, bouts);
String output = new String(bouts.toByteArray());
output = output.replaceAll("\\$\\(pushid\\)", pushId);
if ((command == 'p') || (command == 'r') {

output = output.replaceAll("\\$\\(boundary\\)", boundary);
output = output.replaceAll("\\$\\(headers\\)", content[0]);
output = output.replaceAll("\\$\\(content\\)", content[1]);

}
if (command == 'r') {

output = output.replaceAll("\\$\\(replaceid\\)", replaceId);
}

 output = output.replaceAll("\r\n", "EOL");
output = output.replaceAll("\n", "EOL");
output = output.replaceAll("EOL", "\r\n");
copyStreams(new ByteArrayInputStream(output.getBytes()), outs);

}

mdsConn.connect();

// Output headers returned from mdsConn.
String name, value;
for (int i = 0; true; i++) {
95

BlackBerry Browser Version 4.2 Content Developer Guide
name = mdsConn.getHeaderFieldKey(i);
value = mdsConn.getHeaderField(i);
if ((name ==null) && (value == null)) { break; }

}

ByteArrayOutputStream output = new ByteArrayOutputStream();
copyStreams(mdsConn.getInputStream(), output);
int rescode = mdsConn.getResponseCode();
if (rescode != HttpURLConnection.HTTP_ACCEPTED) {

throw new RuntimeException("Unable to sent message, received bad response code
from MDS:" + rescode);

}
} catch (IOException e) {

throw new RuntimeException("Unable to send message:" + e.toString());
}

}

/**
 * Reads data from the input stream and copies it to the output stream.
 */

private static void copyStreams(InputStream ins, OutputStream outs) throws IOException {
int maxRead = 1024;
byte [] buffer = new byte[1024];
int bytesRead;

for(;;) {
bytesRead = ins.read(buffer);
if (bytesRead <= 0) {break;}
outs.write(buffer, 0, bytesRead);

}
}
}

Example: pap_browserpush.properties file

pap_browser.properties file

iterations=1
delay=0
debug=true
useHttps = false

Push from BlackBerry MDS Simulator on the local computer to BlackBerry device simulator.
mdsHostName = localhost

mdsPort must match WebServer.listen.port set in the BlackBerry MDS Server’s
rimpublic.property file.

mdsPort = 8080

#pushType = Browser-Content
#pushType = Browser-Channel
#pushType = Browser-Channel-Delete
pushType = Browser-Message
pushTitle = Have a Great Day!
96

6: Creating browser push applications
The actual page (and icons) to push.
pushUrlString = http://localhost/testpage/sample.htm
unreadIconUrl = http://localhost/testpage/smile_unread.png
readIconUrl = http://localhost/testpage/smile.png

Authentication credentials.
user=pix
password=password

Example: pap_push.txt

--$(boundary)
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"

"http://www.wapforum.org/DTD/pap_2.0.dtd"
[<?wap-pap-ver supported-versions="2.0"?>]>

<pap>
<push-message push-id="$(pushid)"

deliver-before-timestamp="2005-09-18T19:50:00Z"
ppg-notify-requested-to="http://localhost/
PAPResultNotificationTest.jsp">

<!-- modify address-value attribute as necessary -->
<address address-value="WAPPUSH=recipient1%40pappush.com%3A7874/TYPE=USER@rim.net"/

>
<quality-of-service delivery-method="unconfirmed"/>

</push-message>
</pap>
--$(boundary)
$(headers)

$(content)
--$(boundary)--

Example: pap_replace.txt

--$(boundary)
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"

"http://www.wapforum.org/DTD/pap_2.0.dtd">
<pap>

<push-message push-id="$(pushid)"
replace-push-id="$(replaceid)"
replace-method="pending-only"
ppg-notify-requested-to="http://localhost:8080/
PAPResultNotificationTest.jsp">

<!-- modify address-value attribute as necessary -->
<address address-value="WAPPUSH=recipient2%40pappush.com/TYPE=USER@rim.net"/>
<address address-value="WAPPUSH=recipient3%40pappush.com/TYPE=USER@rim.net"/>
<address address-value="WAPPUSH=recipient4%40pappush.com/TYPE=USER@rim.net"/>
97

BlackBerry Browser Version 4.2 Content Developer Guide
<quality-of-service delivery-method="preferconfirmed"/>
</push-message>

</pap>
--$(boundary)
$(headers)

$(content)
--$(boundary)--

Example: pap_cancel.txt

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"

"http://www.wapforum.org/DTD/pap_2.0.dtd">
<pap>

<cancel-message push-id="$(pushid)">
</cancel-message>

</pap>

Example: pap_status.txt

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"

"http://www.wapforum.org/DTD/pap_2.0.dtd">
<pap>

<statusquery-message push-id="$(pushid)"/>
</pap>
98

7
Testing web pages

Using the simulators
The BlackBerry JDE includes a BlackBerry Device Simulator and a BlackBerry MDS Simulator that let you test your
web pages without using a device on an actual wireless network.

Start the simulators
1. On the Start menu, click Programs > Research In Motion > BlackBerry MDS Simulator > MDS Simulator.

2. On the Start menu, click Programs > Research In Motion > BlackBerry Device Simulator > Device Simulator.

Use the BlackBerry Device Simulator
The BlackBerry Device Simulator displays a Home screen with icons for each application.

1. In the BlackBerry Device Simulator, click the BlackBerry Browser icon.

To select the BlackBerry Browser icon, roll the wheel button on your mouse or click the left mouse button. To
open the application, click the mouse wheel button or click the right mouse button.

2. To view a web page on an internal network, open the browser menu and click Go To. Type the complete URL,
such as http://localhost/tests/sample.wml.

Using the simulators

Tip: To open the browser menu, click the mouse wheel button or the right mouse button.

BlackBerry Browser Version 4.2 Content Developer Guide
BlackBerry Device Simulator for GPRS

The BlackBerry Device Simulator displays icons on the Home screen for each installed application. When you
select an icon, the name of the application appears at the bottom of the screen.

When the BlackBerry Device Simulator window is active, you can roll the wheel button on your mouse to simulate
rolling the trackwheel or trackball, and click the wheel button to simulate clicking the trackwheel or trackball. If
your mouse does not have a wheel button, click and drag the left mouse button to simulate rolling the trackwheel
or trackball, and click the right mouse button to simulate clicking the trackwheel or trackball.

To open an application, roll the trackwheel or trackball to select the appropriate icon, then click the trackwheel or
trackball. The application’s main screen appears.

Press the keys on your computer keyboard or click the keys on the BlackBerry Device Simulator keyboard to
simulate pressing Blackberry device keys.

See the BlackBerry Device Simulator online help for more information.

Application title bar

Home screen
Escape button

Trackwheel

Left Shift key

Backspace key

Enter keyAlt key

Right Shift key
100

A

XHTML language reference

XHTML-MP reference

Structural elements

<body>
Indicates the start of the page body content.

<frame>
Identifies the content to be displayed in a single pane of a frameset.

While the <frame> element is supported by the browser, this is mainly to support content designed
for desktop browsers. You should not include frames in content designed for the BlackBerry device.

XHTML-MP reference
WAP CSS reference

Note: The browser ignores any elements or attributes that are not listed here. Any enclosed text is displayed in normal font, as though
the enclosing tags are not present.

Attribute Description

style Specifies an inline style definition.

title Describes the contents of the body element.

background Specifies an image to use as the background.

bgcolor Specifies the background color of the document.

link Specifies the color of text used to indicate text links.

text Specifies the text color used in the document.

xml:lang Declares the human language used by the element.

Attribute Description

frameborder Ignored.

longdesc Specifies a link to the long description for the frame.

marginheight Ignored.

marginwidth Ignored.

name Specifies a name for the current frame. This attribute is used for targeting content to a particular frame.

noresize Ignored.

scrolling Ignored. Because frames are displayed vertically, the browser permits vertical scrolling when necessary.

src Specifies the URL to be used as the initial content for the frame.

BlackBerry Browser Version 4.2 Content Developer Guide
<frameset>
Presents multiple documents within a single browser window. On a desktop browser, the
<frameset> element defines the layout of the subwindows, or panes, within the main window;
however, when rendered on a BlackBerry device, the layout definition is ignored, and each pane is
displayed vertically one after another in the order in which they are encountered.

While the browser supports the <frame> element, this is mainly to support content designed for
desktop browsers. You should not include frames in content designed for the BlackBerry device.

<head>
Contains information about the current document, such as title, keywords that might be useful to
search engines, and other data that is not considered document content. User agents do not
generally render elements that appear in the head as content. They might, however, make
information in the head available to users through other mechanisms.

<html>
The root element of an HTML file.

<title>
Provides a descriptive title, which appears at the top of the browser screen. This element must be
enclosed in the <head> tag.

Text and text formatting elements

<abbr>
Specifies that the enclosed text is the abbreviated form of a longer word or phrase. Text appears in
normal font.

<acronym>
Specifies that the enclosed text is an acronym. Text appears in normal font.

Attribute Description

cols Ignored.

onload Identifies a script event that is performed when the content of all the frames have been rendered.

rows Ignored.

Attribute Description

profile Ignored.

Attribute Description

version Used for grouping only. Deprecated.

lang Ignored.

xmlns Ignored.
102

A: XHTML language reference
<address>
Specifies that the enclosed text is a mailing address. Text appears in normal font.

Specifies that enclosed text be displayed as bold.

<big>
Renders text in a larger font.

<blockquote>
Specifies that the enclosed text is part of a quotation. Text appears indented by one character space
and appears in normal font.

Starts a new line. To be XHTML-MP–compliant, make sure the element is self-closing.

<center>
Horizontally centers the enclosed text.

<cite>
Specifies that enclosed text is a citation. Text appears in italic.

<code>
Specifies that enclosed text represents code. Text appears in a fixed-width font.

<dfn>
Specifies that enclosed text is a term definition. Text appears in italic.

<div>
Defines a block of text to which a specific presentation style might be applied.

Renders the enclosed text in italic.

Attribute Description

cite Provides a URL citation to indicate the source of a quotation. The attribute value should be a URL
enclosed in quotation marks; the URL appears as an underlined link.

lang Ignored.

Attribute Description

align Aligns content according to the align attribute. Only horizontal alignment is supported.

(align="left", align="center", or align="right")
103

BlackBerry Browser Version 4.2 Content Developer Guide
<h1> to <h6>
Indicate a heading. Text in heading elements appears in bold. The <h1> element appears in the
largest font, with the font size decreasing for each successive heading level.

<hr/>
Renders a horizontal line. To be XHTML-MP–compliant, make sure the element is self-closing.

<i>
Renders the enclosed text in italic.

<kbd>
Represents keyboard input. Text appears in a fixed-width font.

<p>
Delimits a paragraph of text. Each <p> element starts on a new line.

<pre>
Formats the enclosed text preserving all spacing and new lines. It does not display text in a fixed-
width font.

<q>
Specifies that enclosed text is a quotation. Text appears in normal font.

<samp>
Designates enclosed text as sample output from programs and scripts, for example. Text appears in
a fixed-width font.

Attribute Description

align Aligns text horizontally. The following values are acceptable:

• align="left"
• align="right"
• align="center"

Attribute Description

align Aligns text horizontally. The following values are acceptable:

• align="left"
• align="right"
• align="center"

Attribute Description

cite Provides a URL citation to indicate the source of a quotation. The attribute value should be a URL
enclosed in quotation marks; the URL appears as an underlined link.
104

A: XHTML language reference
<small>
Renders text in a smaller font.

Delimits an arbitrary portion of content to which to apply style, display, or event management.

Specifies that enclosed text be displayed as bold.

<tt>
Specifies the enclosed text as teletype. Text appears in a fixed width font.

<u>
Renders the enclosed text as underlined.

<var>
Indicates a variable name, or a value that the user supplies. Text appears in italic.

Link elements

<a>
Indicates an active link.

Attribute Description
href Identifies the target of the link. The following link schemes are supported for the href attribute:

• http://
• mailto:
• tel:
• wtai:

• cti:
• dc:
• PIN:

Text appears as an underlined link. When users select the link, the browser, phone, or message list opens.

hreflang Specifies the language of the link reference.
name Specifies a name for the link. The browser remembers the location as a target for other links.

accesskey Ignored.

charset Specifies the character encoding used in the referenced document; the value must be the name of a
standard character set.

rel Specifies the relationship between the current page and the referenced document. For example,
“stylesheet”.

rev Provides text that describes a link relationship from the referenced target document to the source
document. Not displayed to the user.

style Specifies an inline style definition.
tabindex Ignored.

target Specifies the name of the frame in which to display the content. The _blank, _self, _parent, and
_topspecial values are also supported.

title Provides a descriptive title for the anchor.

type Specifies the content type of the referenced document; the value is a MIME encoding text, such as
"text/plain".
105

BlackBerry Browser Version 4.2 Content Developer Guide
<link>
Provides an external reference to another document.

List elements

<dd>
Specifies a definition description. Text appears as a normal paragraph following the <dt> element,
with the left margin indented one space to the right.

<dl>
Specifies a definition list and encloses one or more <dt> tags.

<dt>
Specifies a definition term. Text appears as a normal paragraph.

Specifies a list item. These elements appear with a bullet or number, depending on the enclosing
element (<div>, , or).

Specifies an ordered (numbered) list. One or more elements enclosed in an element
appear with sequential numbers. The first enclosed element appears on a new line.

Specifies an unordered (bulleted) list. One or more elements enclosed in a element
appear with a bullet. The first enclosed element appears on a new line.

Attribute Description

href Specifies the target URL of the resource.

rel Specifies the relationship between the current page and the referenced document. For example,
“stylesheet”.

target Specifies the name of the frame in which to display the content.

type Specifies the MIME type of the target URL.
106

A: XHTML language reference
Basic form elements

<form>
Specifies a form that gathers information from the user. Users can submit a form by using the
<submit> input element. After a submission, the form collects the names and values of enclosed
<select>, <input>, and <textarea> elements and submits the query as part of the request (GET)
or as post data (POST).

<input/>
Defines a user input object. The browser renders <input> elements according to the value of the
type attribute.

Attribute Description

action This attribute provides a URI to which the form is submitted; this attribute is required.

method The form query is submitted as part of the GET or POST request.

enctype This attribute is ignored. Form data is encoded with the content type application/x-www-form-
urlencoded.

name Ignored.

style Ignored.

title Ignored.

Attribute Description

type The following input types are acceptable:

• type=“checkbox”: The element is rendered using a check box control. Check boxes can occur
anywhere in a form element.

• type=“hidden”: Hidden elements are not displayed, but they are included when the form is
submitted.

• type=“password”: The browser displays an asterisk (*) for each character that the user types.
The actual value is included in encoded form data when the form is submitted.

• type=“radio”: The element is rendered using a radio control (a single selection option list).
Radio input elements can appear anywhere in a form element.

• type=“reset”: The element appears as a button. Users click the button to reset the form values
to its original values. This does not affect other forms on the screen.

• type=“submit”: The element appears as a submit button.
• type=“text”: The element appears as a text input field.
• type=“img”: The associated image that appears is selectable.

The following input types are not supported:

• type=“file”
• type=“button”

maxlength Sets the maximum number of characters for input elements with type set to password or text.

size Specifies the width of the text field, in characters.

checked Supported if type=“checkbox”. If this attribute is included, the check box appears selected, and the
value of the check box is included when the form is submitted.

name Specifies the name of the check box group; it is required when type=“checkbox”.

value Specifies the value to send to the server if a particular check box is selected when the form is
submitted; it is required when type=“checkbox”.
107

BlackBerry Browser Version 4.2 Content Developer Guide
<label>
Provides a descriptive label for one or more input elements in a form. The label element encloses a
text label and one or more <input> elements. The text label appears in the browser in normal text.

<option>
Encloses the text of an option in a select list.

<select>
Denotes a select list. A select list can be a single-selection or a multiple-selection list. A select list
contains one or more option elements.

With single-selection lists, the option with the selected attribute set is selected by default;
otherwise, the first option in the list is selected by default.

With multiple-selection lists, option elements with the selected attribute set are selected by default;
otherwise, no options are selected.

<textarea>
Denotes a multiline text entry field in a form. It can optionally contain plain text, which is displayed
to the user in the text area.

Basic table elements

<caption>
Provides a description for a table. Enclosed text appears in normal font.

Attribute Description

title The title attribute is ignored.

Attribute Description

selected Defines the option that is initially selected.

Attribute Description

multiple Indicates that users are permitted to select more than one option. Rendered as a list of check boxes.

Attribute Description

rows Required. Specifies the vertical dimensions of the text area, in number of characters.

cols Required. Specify the horizontal dimensions of the text area, in number of characters.

name The name attribute provides plain text to display to the user inside the text area.
108

A: XHTML language reference
<table>
Specifies the start of a table; it encloses <thead> and <tbody>, or <caption> and <tr>.

<td>
Denotes a table cell.

<th>
Denotes a table heading cell. Text in the cell is bold.

<tr>
Denotes a table row.

Image elements

<area/>
Defines each area of the image.

Attribute Description

border Specifies the thickness of the border around the outside edges of the table and the inner borders of
the table cells.

cellpadding Specifies the number of pixels of white space to add between cells.

cellspacing Specifies the number of pixels of white space that is rendered between each adjacent cell.

width Sets the width of the table, either in pixels or as a percentage of the browser window.

Attribute Description

colspan Specifies the number of columns that the cell should span.

rowspan Specifies the number of rows that the cell should span.

align Specifies the horizontal alignment of the cell content.

width Specifies the width of the cell, either in pixels or as a percentage of the table width.

Attribute Description

align Specifies the horizontal alignment of the row content.

Attribute Description

shape Defines the shape of the link area. The following values are acceptable:

• shape=“circle”
• shape=“rect”
• shape=“polygon”

coords This attribute specifies the x and y co-ordinates for the link area. Co-ordinates are comma-delimited.

href This attribute specifies file name and location of the link.
109

BlackBerry Browser Version 4.2 Content Developer Guide

Defines an image. Monochrome devices support .png and .gif graphics only. With the BlackBerry
Browser and Internet Browser configurations, the BlackBerry MDS Data Optimization Service
converts .jpeg images to .png format for display on monochrome devices.

<map>
Creates an image map.

Object elements

<object>
The browser supports embedded content such as PME (transcoded SVG) content, MIDI files, and
other HTML pages. The browser does not support embedding of applets; however, the browser
displays embedded content only if it has been properly set to do so by the end user.

<param>
Defines a parameter for an object.

Meta information

<base>
Specifies an absolute URI that acts as the base URI for resolving relative URIs.

Attribute Description

src The browser displays the image that is specified by the src attribute. This attribute is required.

alt Specifies the text that appears when an image is unavailable, provided the browser has been properly
configured to display it.

usemap Specifies the location of the map element.

height Specifies the height of the image with the unit of measurement. For example, “10pt” or “6px”.

width Specifies the width of the image with the unit of measurement. For example, “10pt” or “6px”.

align Images are aligned horizontally according to the align attribute. The following values are acceptable:

• align=“left”
• align=“right”

Vertical alignment is ignored.

Attribute Description

name Identifies the image map. The value must match the corresponding usemap value specified for the
image.

Attribute Description

href Specifies an absolute URI that acts as the base URI for resolving relative URIs.
110

A: XHTML language reference
<meta>
This element provides additional information about the document. If the meta element is included,
the content attribute is required.

Script references

<script>
Defines a script, such as a JavaScript.

Attribute Description

http-equiv Defines the shape of the link area. The following values are acceptable:

• refresh: Redirects the browser to the URL specified by the content attribute.
• expires: Specifies that the browser should remove the page from the cache after the number of

seconds specified by the content attribute.

Note: This tag should be used sparingly for pages intended for wireless browsing because it
increases user traffic on the wireless network and can increase the time it takes to display the
page.

• cache-control: Indicates that cache control parameters have been set for the page, specified
by the content attribute.

content Required. Sets the meta information for http-equiv. If:

• http-equiv=“refresh”: Specifies the URL to which the browser is redirected.
• http-equiv=“expires”: Specifies the number of seconds after which the page is cleared from

the cache. A value of -1 indicates that the page is not cached, so that the browser requests and
downloads the page every time it is accessed.

• http-equiv=“cache-control”: Specifies how the page is cached. The following values are
acceptable:

• Public: Page can be stored in public shared caches.

• Private: Page can be stored only in private caches.

• No-cache: Page can not be cached.

• No-store: Page can be cached but not archived.

Attribute Description

type Specifies the MIME type of the script.

language Deprecated.
111

BlackBerry Browser Version 4.2 Content Developer Guide
WAP CSS reference
background

A shorthand property that sets some or all the background properties. Properties can be listed in
any order.

background-attachment
For background images that are set behind an entire document, as a property applied to the <body>
element, the background-attachment property determines whether a background image is fixed
and content scrolls across it, or whether the background scrolls with the content.

background-color
Sets the background color of content and padding. If you set a background color, set the foreground
to a contrasting color, so that its content remains visible.

background-image
Sets an image as a background pattern.

Note: Do not set a background-attachment value unless you are applying background to the <body> element.

Value Description

property_list Specifies a whitespace-separated list of values for the background-attachment, background-
color, background-image, and background-repeat properties. For example:

blockquote {background: red url("images/sand.gif") no-repeat center}

See the descriptions of the background-attachment, background-color, background-
image, and background-repeat properties for more information about valid values.

Value Description

fixed Indicates that the content scrolls, but the background image does not.

scroll Default. Indicates that the background image scrolls with the content.

Value Description

color_value Any valid color. A valid color can be specified in the following ways:

• an RGB value (“250,239,111”)
• hexidecimal notation (“#770aff" or "#70f" (equal to "#7700ff"))
• a valid textual color name (“red”)

transparent Default. Makes the background invisible, lets the color of the parent element be seen.

Value Description

URL Specifies the location of the image to be used for the background pattern.

none Default. No background pattern is used.
112

A: XHTML language reference
background-repeat
Defines whether the background image is repeated (tiled) to fill the display.

border
A shorthand property for setting the width, color, and style of the individual sides of the border.
Properties can be listed in any order.

border-bottom, border-left, border-right, border-right
Shorthand properties for setting the color, style, and width of the individual sides of the border.
Properties can be listed in any order.

border-bottom-color, border-left color, border-right-color, border-top-color
Sets the color of the individual sides of the border.

Value Description

repeat Default. The background image is tiled both horizontally and vertically.

repeat-x The background image is tiled horizontally and is left-aligned.

repeat-y The background image is tiled vertically and is vertically centered.

no-repeat The background image is not tiled and is vertically centered and left-aligned.

Value Description

property_list Specifies a whitespace-separated list of values for the border-color, border-style, and
border-width properties. For example:

table {border: red solid thick}

See the descriptions of the border-color, border-style, and border-width properties for
more information about valid values.

Value Description

property_list Specifies a whitespace-separated list of values for the color, style, and width of the specified side of a
border. For example:

table {border-right: red solid thick}

See the descriptions of the border-color, border-style, and border-width properties for
more information about valid values.

Note: You must set a border-style property to solid to display a border.

Value Description

color_value Any valid color. A valid color can be specified in the following ways:

• an RGB value (“250,239,111”)
• hexidecimal notation (“#770aff" or "#70f", which is equal to "#7700ff")
• a valid textual color name (“red”)

The default color is the current foreground color of the element.
113

BlackBerry Browser Version 4.2 Content Developer Guide
border-bottom-style, border-left-style, border-right-style, border-top-style
Sets the style of the individual sides of the border.

border-bottom-width, border-left-width, border-right-width, border-top-width
Sets the width of the individual sides of the border.

border-color
A shorthand property for setting the color of all four borders.

border-style
A shorthand property for setting the style of all four borders.

Value Description

none Default. The element has no border.

hidden A hidden border is used. Hidden borders have no width; the browser ignores them.

solid A solid line is used as a border for the element.

Note: You must set a border-style property to solid to display a border.

Value Description

width_value Specifies the width of the border. The values for these properties can be any integer with the unit of
measurement. For example, "10pt" or "6px".

Possible units include em (ems), ex (x-height), px (pixels), in (inches), cm (centimeters), mm
(millimeters), pt (points), and pc (picas).

thin Sets the element border to the browser’s interpretation of a thin width.

medium Default. Sets the element border to the browser’s interpretation of a medium width.

thick Sets the element border to the browser’s interpretation of a thick width.

inherit Indicates that the element inherits the border width of the containing element.

Value Description

color_value Any valid color. A valid color can be specified in the following ways:

• an RGB value (“250,239,111”)
• hexidecimal notation (“#770aff" or "#70f", which is equal to "#7700ff")
• a valid textual color name (“red”)

The default color is the current foreground color of the element.

Value Description

none Default. The element has no border.

hidden A hidden border is used. Hidden borders have no width; the browser ignores them.

solid A solid line is used as a border for the element.
114

A: XHTML language reference
border-width
A shorthand property for setting the width of all four borders.

color
Sets the foreground color. The foreground is the content of the element, typically text, but also, for
example, the rule drawn for the <hr/> element, and the color of any border (unless you set another
color with one of the border properties).

font
A shorthand property that sets the font-family, font-size, font-style, and font-weight for text.
Properties can be listed in any order.

font-family
Sets a specific or generic font for text.

Value Description

width_value Specifies the width of the border. The value for this property can be any integer with the unit of
measurement. For example, "10pt" or "6px".

Possible units include em (ems), ex (x-height), px (pixels), in (inches),
cm (centimeters), mm (millimeters), pt (points), and pc (picas).

thin Sets the element border to the browser’s interpretation of a thin width.

medium Default. Sets the element border to the browser’s interpretation of a medium width.

thick Sets the element border to the browser’s interpretation of a thick width.

inherit Indicates that the element inherits the border-width property of the containing element.

Value Description

color_value Any valid color. A valid color can be specified in the following ways:

• an RGB value (“250,239,111”)
• hexidecimal notation (“#770aff" or "#70f", which is equal to "#7700ff")
• a valid textual color name (“red”)

Value Description

property_list Specifies a whitespace-separated list of values for the font-family, font-size, font-style,
and font-weight properties. For example:

p {font: italic bold "Times New Roman" 10px}

See the descriptions of the font-family, font-size, font-style, and font-weight
properties for more information about valid values.

Value Description

font_name A specific font family name, such as "Arial" or "Times New Roman". Font names must be enclosed
in quotation marks.

generic_font A font keyword, such as serif, sans-serif, cursive, and monospace. Generic font keywords
should not be enclosed in quotation marks.

inherit Indicates that the element inherits the font-family property of the containing element.
115

BlackBerry Browser Version 4.2 Content Developer Guide
font-size
Sets the size of a font, either in absolute or relative terms. Relative values are relative to the font size
of the element that contains the current element.

font-style
Sets the font style for text.

font-weight
Sets the thickness of the font.

The browser uses a roman font for font-weight values from 100 to 400 and a bold font for values
from 500 to 900.

Value Description

size_value Any integer with the unit of measurement. For example, "10pt" or "6px".

Possible units include em (ems), ex (x-height), px (pixels), in (inches),
cm (centimeters), mm (millimeters), pt (points), and pc (picas).

absolute_size Renders text according to a browser standard.

Possible values include xx-small, x-small, small, medium, large, x-large, and xx-large.

relative_size Renders text at a size relative to the standard font size of the element.

Possible values include smaller and larger.

inherit Indicates that the element inherits the font-size property of the containing element.

Value Description

normal Default. No font style is applied.

italic Uses a font with “italic” in its name or, failing that, one with “oblique” in its name. Italic fonts are also
sometimes named cursive or kursive.

oblique Uses a font with “oblique” in its name or, failing that, one with “italic” in its name. Oblique fonts are
also sometimes named slanted or inclined.

inherit Indicates that the element inherits the font-style property of the containing element.

Value Description

weight_value Specifies the absolute weight of the font. Possible values include 100 (lightest), 200, 300, 400, 500,
600, 700, 800, and 900 (heaviest).

normal Sets the font to standard roman font weight. Equivalent to 400 on the numerical scale.

bold Sets the font to standard bold font weight. Equivalent to 700 on the numerical scale.

bolder Increases the font weight by one level on the numerical scale. If the font already had a weight
equivalent to 900, it remains 900.

lighter Decreases the font weight by one level on the numerical scale. If the font already had a weight
equivalent to 100, it remains 100.

inherit Indicates that the element inherits the font-weight property of the containing element.
116

A: XHTML language reference
height, width
Set the height and width of the content.

table-layout
Controls the layout of table cells, rows, and columns.

text-align
Sets the horizontal alignment of lines of text.

text-decoration
Sets underlining and blinking of text.

Value Description

measure_value Specifies the height or width. The value of these properties can be any integer with the unit of
measurement. For example, "10pt" or "6px".

Possible units include em (ems), ex (x-height), px (pixels), in (inches),
cm (centimeters), mm (millimeters), pt (points), and pc (picas).

auto Adjusts the height or width of the element to fit the content.

inherit Indicates that the element inherits the height or width property of the containing element.

Value Description

fixed Specifies that the width of a cell is fixed to a specified width. In this case, the table layout does not
depend on the content.

For example, if a column is fixed to a width of 25 pts, any line of text that exceeds this length is broken
and continued on a new line.

auto Specifies that the width of the cell is adjusted to the content. In this case, the table layout depends on
the content.

For example, if a line of text is 40 pts in length, the cell is adjusted to a width of 40 pts plus any
specified margin width.

inherit Indicates that the element inherits the table-layout property of the containing element.

Value Description

left Default. Aligns text to the left margin.

right Aligns text to the right margin.

center Centers the text in the display.

inherit Indicates that the element inherits the text-align property of the containing element.

Value Description

none Default. No text decoration is applied.

underline Underlines the text.

blink Causes the text to blink.

inherit Indicates that the element inherits the text-decoration property of the containing element.
117

BlackBerry Browser Version 4.2 Content Developer Guide
-wap-input-format
Sets an input mask for text input in a form.

To limit the number of characters users can type, specify a single-digit number before the character
tag. For example, “3X” requires the user to type a maximum of three symbolic, numeric, or
uppercase alphabetic characters.

To allow users to type an unlimited number of characters, specify an asterisk (*) before the
character tag. For example, “*a” lets the user type any number of symbolic or lowercase alphabetic
characters.

To insert a character into the mask, use the syntax \c, replacing the c with the character that you
want to insert. This is useful for inserting, for example, a dash in a nine-digit area code.

-wap-input-required
Requires a user to type text, click a button, or click a menu item on a form.

-wap-marquee-dir
Controls whether content scrolls from left to right (ltr) or from right to left (rtl).

-wap-marquee-loop
Controls how many times the marquee effect repeats.

Value Description

A Any symbolic or uppercase alphabetic character (no numbers).

a Any symbolic or lowercase alphabetic character (no numbers).

N Any numeric character (no symbols or alphabetic characters).

X Any symbolic, numeric, or uppercase alphabetic character (not changeable to lowercase).

x Any symbolic, numeric, or lowercase alphabetic character (not changeable to uppercase).

M Default. Any symbolic, numeric, or uppercase alphabetic character (changeable to lowercase). For
multiple character input, the user input automatically defaults to an uppercase first character.

m Any symbolic, numeric, or lowercase alphabetic character (changeable to uppercase). For multiple
character input, the user input automatically changes to a default lowercase first character.

Value Description

True Specifies that the user is required to supply input.

False Specifies that the user is not required to supply input.

Note: This property requires that the selected element also has the display property set to the -wap-marquee value.

Value Description

ltr Scrolls content from left to right.

rtl Scrolls content from right to left.

Note: This property requires that the selected element also has the display property set to the -wap-marquee value.
118

A: XHTML language reference
-wap-marquee-speed
Controls the speed of the marquee effect.

-wap-marquee-style
Controls how content scrolls across the screen.

Values Description

iterations Indicates the number of iterations the marquee effect performs. The value can be any integer. Setting
this value to 0 has the same effect as not setting the display property to -wap-marquee.

infinite The marquee effect loops indefinitely.

Note: This property requires that the selected element also has the display property set to the -wap-marquee value.

Value Description

slow Scrolls text across the screen slowly.

normal Scrolls text across the screen at the standard scroll rate.

fast Scrolls text across the screen quickly.

Note: This property requires that the selected element also has the display property set to the -wap-marquee value.

Value Description

scroll The content starts completely off one side of the screen and then scrolls across the screen until it is
completely off the other side of the screen, then repeats.

slide The content starts completely off one side of the screen and then scrolls across the screen. Scrolling
stops when the first character reaches the other side of the screen.

alternate The content starts completely off one side of the screen, and scrolls across the screen until it is
completely off the other side of the screen. It does the same thing in the reverse direction, and then
repeats.
119

BlackBerry Browser Version 4.2 Content Developer Guide
Element and CSS property matrix

1 Applies only to <input> elements where type is one of “button”, “submit”, or “reset”.
2 Applies only to <input> elements where type=“text”.

CSS property XHTML tag

<a
>

<b
ig

>

<b
li

nk
>

<b
lo

ck
qu

ot
e>

<b
od

y>

<b
ut

to
n>

<c
en

te
r>

<c
it

e>

<c
od

e>

<d
d>

<d
fn

>

<d
ir

>

<d
iv

>

<d
t>

<e
m>

<f
ie

ld
se

t>

<f
on

t>

<f
or

m>

<h
1>

 to
 <
h6
>

<i
>

<i
mg

>

<i
np

ut
>

<k
bd

>

<l
eg

en
d>

<l
i>

background a

background-attachment a

background-color a a a a a a a b a a a a a a a a a a a a a a a a a

background-image a

background-repeat a

border a a a

border-bottom a a a

border-bottom-color a a a

border-bottom-style a a a

border-bottom-width a a a

border-color a a a

border-left a a a

border-left-color a a a

border-left-style a a a

border-left-width a a a

border-right a a a

border-right-color a a a

border-right-style a a a

border-right-width a a a

border-style a a a

border-top a a a

border-top-color a a a

border-top-style a a a

border-top-width a a a

border-width a a a

color a

font a

font-family a

font-size a

font-style a

font-weight a

height a a 1

table-layout
text-align a

text-decoration a

width a a 1

-wap-input-format 2

-wap-input-required 2

-wap-marquee-dir a

-wap-marquee-loop a

-wap-marquee-speed a

-wap-marquee-style a
120

A: XHTML language reference
Element/CSS property matrix (continued)
CSS property XHTML tag

<m
ar

qu
ee

>

<m
en

u>

<o
l>

<o
pt

gr
ou

p>

<o
pt

io
n>

<p
>

<p
re

>

<s
>

<s
am

p>

<s
el

ec
t>

<s
ma

ll
>

<s
pa

n>

<s
tr

ik
e>

<s
tr

on
g>

<s
ub

>

<s
up

>

<t
ab

le
>

<t
d>

<t
ex

ta
re

a>

<t
h>

<t
r>

<t
t>

<u
>

<u
l>

<v
ar

>

background a a a a

background-attachment
background-color a

background-image a a a a

background-repeat a a a a

border a a a a a

border-bottom a a a a a

border-bottom-color a a a a a

border-bottom-style a a a a a

border-bottom-width a a a a a

border-color a a a a a

border-left a a a a a

border-left-color a a a a a

border-left-style a a a a a

border-left-width a a a a a

border-right a a a a a

border-right-color a a a a a

border-right-style a a a a a

border-right-width a a a a a

border-style a a a a a

border-top a a a a a

border-top-color a a a a a

border-top-style a a a a a

border-top-width a a a a a

border-width a a a a a

color a

font a

font-family a

font-size a

font-style a

font-weight a

height
table-layout a

text-align a

text-decoration a

width a a a

-wap-input-format a

-wap-input-required a

-wap-marquee-dir a

-wap-marquee-loop a

-wap-marquee-speed a

-wap-marquee-style a
121

BlackBerry Browser Version 4.2 Content Developer Guide
122

B

WML language reference

WML reference
The following table summarizes browser support for each WML element and its attribute(s). The browser
supports WML 1.3.

Structure elements

<access>
If specified, the browser compares the <access> element to the domain and path that are specified
in the <access> element to determine whether the user has the proper access to display the page. If
not, the browser displays an error message.

<card>
Contains the entire card.

<head>
A container element for information on access control that applies to the entire deck (the collection
of all cards). See the <access> element.

<meta>
Not supported. The browser ignores any <meta> tags.

WML reference

Attribute Description

domain Specifies the domain used to verify access privileges.

path Specifies the path used to verify access privileges.

Attribute Description

title Displays the card title in the Title area of the screen.

newcontext If set to true, this attribute clears the variable in store.

ordered Ignored. All elements in a page are rendered.

onenterforward Opens the specified URL when the card is accessed using a <go> task.

onenterbackward Opens the specified URL when the card is accessed using a <prev> task.

ontimer Opens the specified URL when the timer has expired.

BlackBerry Browser Version 4.2 Content Developer Guide
<template>
Specifies deck-level <do> or <onevent> items. These items are included in every card for the deck,
unless the card has a more specific <do> or <onevent> element that shadows those in the template.

The browser manages template attributes as though they are <onevent> definitions for the
corresponding events.

<wml>
Defines a WML deck.

Text and text formatting elements

Renders text in bold in the current font and size, if available. Otherwise, the standard font is used.

<big>
Renders text in the next larger size of the current font, if available. Nesting of <big> and <small>
elements is respected.

Starts a new line.

<p>
Denotes a new paragraph and renders content according to the attributes.

For layout purposes, the <p> and
 elements are the same.

Renders text in italic in the current font, if available. Otherwise, the standard font is used.

<i>
Renders text in italic in the current font and size, if available. Otherwise, the standard font and size
is used.

Attribute Description

onenterforward Treated as an onenterforward <onevent> element with a <go> action.

onenterbackward Treated as an onenterbackward <onevent> element with a <go> action.

ontimer Treated as an ontimer <onevent> element with a <go> action.

Attribute Description

align Specifies the position of the contents of the <p> element on screen.

mode Ignored. Content is always wrapped.
124

B: WML language reference
<pre>
Not supported.

<small>
Renders text in the next smaller size of the current font, if available. The browser supports nesting of
big and small elements.

Renders text in the bold font of the current size, if available. Otherwise, the standard font is used.

<u>
Underlines content enclosed in the <u> element in the current font and size, if available. Otherwise,
the standard font and size are used.

Link elements

<a>
Specifies a link to follow.

<anchor>
When the user moves the cursor over a character or image that is contained in the <anchor>
element, users can click the Follow Link menu item to perform the <go>, <prev>, or <refresh> task
that is associated with the <anchor> element.

Attribute Description

href Specifies the target of the link. The browser substitutes any variable references from the WAP context.

title Ignored.

accesskey Ignored.

Attribute Description

domain Specifies the domain used to verify access privileges.

path Specifies the path used to verify access privileges.
125

BlackBerry Browser Version 4.2 Content Developer Guide
Table elements

<table>
Denotes a new table.

<tr>
Denotes a new table row.

<td>
Denotes a new table cell.

Image elements

Defines an image. When images are contained in <anchor> or <a> elements, users can select the
image.

Attribute Description

title Ignored.

align Aligns the text in table columns according to the align value. This attribute is optional. The content of
each cell is left-aligned by default.

For example, align="LCR". Content in the first column is left-justified, content in the second column
is centered, and content in the third column is right-aligned.

columns Required. Specifies the number of columns in the table.

Attribute Description

alt Specifies the text that appears when an image is unavailable, provided that the browser is properly
configured to display it. When the real image arrives, the real image replaces the alt placeholder.

src Specifies the location of the image on the server.

localsrc Unsupported. The browser does not support <localsrc> images.

vspace Specifies the amount of white space to insert above and below the image.

hspace Specifies the amount of white space to insert to the left and right of the image.

align Not supported. Each image is displayed on its own line.

height Specifies the image height.

width Specifies the image width.
126

B: WML language reference
Event elements

<do>
Defines an event trigger. The <do> element can enclose the following task elements: <go>, <prev>,
<noop>, or <refresh>.

In the browser, <do> elements that are defined on a card appear both as menu items on the browser
menu and as soft keys in a non-scrolling area at the bottom of the screen.

<onevent>
Specifies how events are managed.

<postfield>
Specifies name and value pairs that are included in the HTTP request. <postfield> elements must
be enclosed in a <go> element. Variable references in the name and value attributes of each
<postfield> element are replaced with appropriate values from the WAP context.

Attribute Description

type Required. Specifies the type of <do> element. The <do> element type can be one of accept, help, or
prev. A <do> element of type accept appears first on the menu.

The type attribute also matches <do> elements in the deck template, when the name attribute is not
defined, for shadowing purposes.

label Specifies the label used for the associated menu item. If a label attribute is not included, a default name
is assigned to the menu item based on type.

name Matches <do> elements in the deck template for shadowing purposes.

optional <do> elements with the optional attribute set appear after other <do> elements on the menu.

Attribute Description

type Required. Identifies the event to manage; it also matches <do> elements in the deck template for
shadowing.

The type attribute can have one of the following values:

• onenterbackward: Occurs when a user navigates backward to a card.
• onenterforward: Occurs when a user navigates forward to a card.
• onpick: Occurs when a user selects or clears an option.
• ontimer: Occurs when the timer, specified by the <timer> element, expires.

id Sets a unique name for the element.

Attribute Description

name Required. Specifies the name of the variable to be passed to the server.

value Required. Specifies the value of the variable to be passed to the server.

id Sets a unique name for the element.
127

BlackBerry Browser Version 4.2 Content Developer Guide
Task elements

<go>
Directs the browser to a specified URI. The browser sets any variables that are specified in <setvar>
elements within the <go> element, and includes any values that are specified in contained
<postfield> elements.

<noop>
Specifies whether the browser effectively removes any <do> or <onevent> elements from the current
card.

<prev>
Directs the browser to a specified URI. The inclusion of the <prev> element in <do> elements affects
menu construction. The browser menu always contains at least one item that lets users go back in
the navigation history.

If the current card does not contain any <do> elements with a <prev> task, by default the browser
creates a Back menu item. If the current card contains one or more <do> elements that contain
<prev> elements, the browser does not create a separate menu item and relies on the <do> elements
for that card to provide this behavior instead.

<refresh>
Refreshes any variables that are specified by the enclosed <setvar> element(s). If an event occurs
that has a <refresh> task, the browser first sets any variables that are specified in <setvar>
elements that are contained in the <refresh> element. It then refreshes the current page using the
updated WAP context.

Attribute Description

href Specifies the target URI that the browser goes to.

sendreferer Specifies whether the URI is sent in the request. Valid values are yes or no.

method Specifies the request type. The browser supports both the GET and POST methods of sending
requests.

enctype Ignored. The browser uses the default encoding: application/x-www-form-urlencoded.

cache-control Forces page retrieval from the network instead of the cache. If this attribute is set to no-cache, a
flag is set on the request being sent to invalidate this page in the cache, if it is there, before
retrieving the page.

accept-charset Ignored. The browser uses the default character set: UTF-8.
128

B: WML language reference
Input elements

<fieldset>
Ignored. Enclosed elements are rendered as though the <fieldset> element did not exist.

<input>
Renders as a text field into which users can type text. If users type a value that is not consistent with
the restrictions specified by the attributes in the input element, the browser displays a warning
when users try to save the value.

Input boxes appear on a separate line from the surrounding text.

Attribute Description

name Specifies the name of the variable to set with any typed value.

type Specifies the type of information being collected. Valid values include text or password. If type is
set to password, the browser displays an asterisk (*) for each character that the user types.

value Specifies the initial value that is displayed in the input field when the card is first rendered. This value
is used only when the variable specified by the name attribute is not set already in the WAP Context. If
the variable is set, the current value of that variable is used instead.

format Specifies a mask. The browser checks that any text the user enters in the input field conforms to the
mask that is specified by this attribute. The following character tags define which characters can be
typed:

• A — Any symbolic or uppercase alphabetic character (no numbers).
• a — Any symbolic or lowercase alphabetic character (no numbers).
• N — Any numeric character (no symbols or alphabetic characters).
• X — Any symbolic, numeric, or uppercase alphabetic character (not changeable to lowercase).
• x — Any symbolic, numeric, or lowercase alphabetic character (not changeable to uppercase).
• M — Default. Any symbolic, numeric, or uppercase alphabetic character (changeable to lowercase).

For multiple character input, the user input automatically changes to a default uppercase first
character.

• m — Any symbolic, numeric, or lowercase alphabetic character (changeable to uppercase). For
multiple character input, the user input automatically changes to a default lowercase first
character.

Tips:

• To limit the number of characters users can type, specify a single-digit number before the character
tag. For example, "3X" requires the user to type a maximum of three symbolic, numeric, or
uppercase alphabetic characters.

• To let users type an unlimited number of characters, specify an asterisk (*) before the character tag.
For example, "*a" lets the user type any number of symbolic or lowercase alphabetic characters.

• To insert a character into the mask, use the syntax \c, replacing the c with the character that you
want to insert. This is useful for inserting, for example, a dash in a nine-digit area code.

emptyok Lets the user leave the field blank.

size Specifies the size, in characters, of the input box.

maxlength Specifies the maximum length of text the user can type.

tabindex Ignored. Tabbing is not supported.
129

BlackBerry Browser Version 4.2 Content Developer Guide
<optgroup>
Ignored. Options in a <select> element are rendered as a flat list on the screen.

<option>
Specifies an item in a <select> list. <option> elements are rendered in the manner specified by the
enclosing <select> list.

<select>
Presents a list to the user. Users can select one or more of the options.

Select lists are fully displayed on every card. Users can scroll through options. Single-selection lists
are rendered as option buttons. Multiple-selection lists are rendered as check boxes.

See the <option> element for more information.

Variable elements

<setvar>
Specifies a new value for a given variable in the WAP context. When a <go>, <prev>, or <refresh> task
is performed, the browser first looks for any associated <setvar> elements. It then updates the WAP
context accordingly before running the task.

Attribute Description

value Specifies the value of the enclosing <select> variable, if the <select> element has a NAME
attribute.

title Ignored.

onpick Specifies the URI that the browser loads when the option is selected.

Attribute Description

title Ignored.

name Specifies the name of the variable that is set with the selection.

value Sets the default value of the variable.

iname Specifies the variable to be set with the (1-based) index of the selected option, according to the
specifications.

ivalue Sets the index(es) of the preselected option(s). Use this attribute only if the variable specified by
iname does not already have a value.

multiple Specifies whether the <select> element is rendered as a multiple-selection list with a set of check
boxes.

tabindex Ignored. Tabs are not supported.

Attribute Description

name Sets the name of the variable.

value Sets the value of the variable.
130

B: WML language reference
<timer>
Specifies a timer for the current card. The browser implements card timers according to the WML
specifications. In particular, a <refresh> operation stops the timer, sets its corresponding variable to
the current timer value, performs the refresh, and then resets and restarts the timer.

When the timer expires, the variable that the name attribute specifies is set to 0 before any
<ontimer> tasks are run.

Attribute Description

name Specifies the variable name to be set with the timer value for card entry, exit, and timer-expire events.

value Specifies the initial timer value for on-card entry events.
131

BlackBerry Browser Version 4.2 Content Developer Guide
132

C

JavaScript language reference

Using JavaScript
The BlackBerry Browser supports JavaScript 1.0, 1.1, 1.2, 1.3, and small subsets of JavaScript 1.4 and 1.5. The browser
also supports the ECMA-262 ECMAScript Language Specification..

The browser processes JavaScript that is run when the page is first rendered and JavaScript that is associated with
control actions on the page. The JavaScript support manages any additional HTML and JavaScript content that the
JavaScript produces and reads any auxiliary JavaScript support libraries that are referenced from the page.

On the BlackBerry Browser, users can turn JavaScript support on or off. JavaScript support can also be turned off
through an IT policy.

See “Scripting Basics” on page 193 for information about JavaScript reserved words and supported statements,
and operators and expressions.

Additional JavaScript resources can be found on the Internet.

Supported JavaScript objects
The BlackBerry Browser supports the following JavaScript objects:

Using JavaScript
Supported JavaScript objects

Note: JavaScript is supported only on BlackBerry devices with at least 16 MB of memory.

Note: The BlackBerry Browser does not support style sheets for Dynamic HTML. Any JavaScript on the page that creates Dynamic HTML
effects (for example, pop-up menus) runs but has no visual effect, and might not be fully functional. The JavaScript support is provided
for pages for which HTML content is partially or fully generated by JavaScript and for data processing operations that are coded in
JavaScript, such as input field validation in forms and processing Login buttons on various sites.

Object Summary See page

BlackBerry The BlackBerry object defines the network read-only property, which is used to define the network on
which the BlackBerry communicates.

134

BlackBerry Location The BlackBerry Location object is designed to provide access to the GPS location of the BlackBerry device.
The GPS location refers to the geographical co-ordinates, latitude and longitude, of the BlackBerry
device.

135

Navigator The Navigator object is designed to return information about the version of the BlackBerry Browser that
is being used. All its properties, which are read-only, contain information about different aspects of the
browser.

138

BlackBerry Browser Version 4.2 Content Developer Guide
BlackBerry
The BlackBerry object defines the network read-only property, which is used to define the network on which the
BlackBerry communicates.

location
Acts a pointer to the blackberry.location object. This property is supported only by BlackBerry
devices running BlackBerry Device Software Version 4.1 or later. This property is read-only.

Document The Document object provides access to the elements in an HTML page from within your script. This
includes the properties of every form, link, and anchor (and, where applicable, any subelements), as well
as global document properties such as background and foreground colors.

142

Form The Form object lets you access the elements of an HTML form that is used to collect information from
users.

149

Screen The Screen object returns information about the dimensions and color depth of the BlackBerry device
display.

156

Window The Window object is created automatically when the browser encounters a <body> or <frame> tag, and
returns information about the window.

158

Window History The Window History object stores an array of the URLs previously visited by the user during the current
browser session.

170

Member type Member name Notes See page

Properties location Read-only. 135

network Read-only. 135

Syntax blackberry.location

Parameters none

Returns A pointer to the blackberry.location object.

Example The following code fragment displays the current geographic co-ordinates of the
BlackBerry device:

document.write("The client BlackBerry device is currently
located at " + blackberry.location.latitude +
" degrees latitude and " +
blackberry.location.longitude +
" degrees longitude.");

See also blackberry.location.GPSSupported
blackberry.location.latitude
blackberry.location.longitude
blackberry.location.onLocationUpdate()
blackberry.location.refreshLocation()
blackberry.location.setAidMode()

Object Summary See page
134

C: JavaScript language reference
network
Identifies the wireless network on which the BlackBerry device is communicating. This property is
read-only.

BlackBerry Location
The BlackBerry Location object is designed to provide access to the GPS location of the BlackBerry device. The
GPS location refers to the geographical co-ordinates, latitude and longitude, of the BlackBerry device.

GPSSupported
Returns whether the BlackBerry device supports GPS or not. This property is read-only.

Syntax blackberry.network

Returns A string identifying one of the following networks: Mobitex®, GPRS, CDMA, or iDEN.

Example The following code fragment displays the value of the network property:

document.write("The client BlackBerry device is communicating
on the " + blackberry.network + " wireless
network.");

See also window.blackberry

Member type Member name Notes See page

Methods onLocationUpdate() — 137

refreshLocation() — 137

setAidMode() — 137

Properties GPSSupported Read-only. 135

latitude Read-only. 139

longitude Read-only. 139

Syntax blackberry.location.GPSSupported

Returns • Boolean true if the BlackBerry device supports GPS.

• Boolean false if the BlackBerry device does not support GPS.

Example The following code determines whether GPS is supported, then sets the GPS
location aid mode and refreshes the location:

if(blackberry.location.GPSSupported) {
blackberry.location.setAidMode(0);
blackberry.location.refreshLocation();

}

See also blackberry.location
135

BlackBerry Browser Version 4.2 Content Developer Guide
latitude
Provides the current latitude of the BlackBerry device. To make sure that the most accurate
co-ordinate is returned, you should call refreshLocation() first. This property is read-only.

longitude
Provides the current longitude of the BlackBerry device. To make sure that the most accurate
co-ordinate is returned, you should call refreshLocation() first. This property is read-only.

Syntax blackberry.location.latitude

Returns The current latitude, in degrees, of the BlackBerry device. Positive values indicate
northern latitude; negative values indicate southern latitude.

Example The following code fragment displays the current geographic co-ordinates of the
BlackBerry device:

document.write("The client BlackBerry device is currently
located at " + blackberry.location.latitude +
" degrees latitude and " +
blackberry.location.longitude +
" degrees longitude.");

See also blackberry.location
blackberry.location.longitude

Syntax blackberry.location.longitude

Returns The current longitude, in degrees, of the BlackBerry device. Positive values indicate
eastern longitude; negative values indicate western longitude.

Example The following code fragment displays the current geographic co-ordinates of the
BlackBerry device:

document.write("The client BlackBerry device is currently
located at " + blackberry.location.latitude +
" degrees latitude and " +
blackberry.location.longitude +
" degrees longitude.");

See also blackberry.location
blackberry.location.latitude
136

C: JavaScript language reference
onLocationUpdate()
Registers a callback method that is called when the location is updated using refreshLocation().

refreshLocation()
Requests an update of the location of the BlackBerry device.

setAidMode()
Specifies which method the BlackBerry device will use to obtain the GPS location. The device can
obtain location information in one of three ways.

Syntax blackberry.location.onLocationUpdate(method)

Parameters method A supported JavaScript method.

Example The following code fragment displays an alert to the user when the location is
updated, informing them of the updated location.

blackberry.location.onLocationUpdate(window.alert("Your new
position is " + blackberry.location.latitude +
" degrees latitude and " +
blackberry.location.longitude +
" degrees longitude."));

See also blackberry.location

Syntax blackberry.location.refreshLocation

Returns A string containing the current latitude and longitude, in degrees, of the BlackBerry
device.

Example The following code determines whether GPS is supported, then sets the GPS
location aid mode and refreshes the location:

if(blackberry.location.GPSSupported) {
blackberry.location.setAidMode(0);
blackberry.location.refreshLocation();

}

See also blackberry.location

Aid Mode Description

Cellsite This method uses the GPS location of the active cellsite tower to provide first order GPS information. It
provides the least accurate location information; however, it is the fastest location mode.

Note: This location method requires network connectivity and carrier support.

Assisted This method uses the network to provide ephemeris satellite data to the device chip. It provides the GPS
location faster than the autonomous mode and more accurately than the cellsite mode.

Note: This location method requires network connectivity and carrier support.

Autonomous This method uses the GPS chip on the BlackBerry device without assistance from the network. The
autonomous mode provides the first GPS location in the slowest amount of time.
137

BlackBerry Browser Version 4.2 Content Developer Guide
Navigator
The Navigator object is designed to return information about the version of the BlackBerry Browser that is being
used. All its properties, which are read-only, contain information about different aspects of the browser.

Syntax blackberry.location.setAidMode(aidMode)

Parameters aidMode Identifies the method used to obtain the GPS location. The value for
this parameter may be one of:

• 0 (Cellsite)

• 1 (Assisted)

• 2 (Autonomous)

Example The following code determines whether GPS is supported, then sets the GPS
location method and refreshes the location:

if(blackberry.location.GPSSupported) {
blackberry.location.setAidMode(0);
blackberry.location.refreshLocation();

}

See also blackberry.location

Member type Member name Notes See page

Methods javaEnabled() — 139

plugins.refresh() Stub implementation. This method has no effect. —

preference() — 141

savePreferences() Stub implementation. This method has no effect. —

taintEnabled() — 141

Properties appCodeName Read-only. 135

appName Read-only. 139

appVersion Read-only. 139

language Read-only. 140

mimeTypes Read-only. 140

platform Treated as a constant. Returns "BlackBerry." —

plugins Not supported. Returns an empty array. —

userAgent Read-only. 142
138

C: JavaScript language reference
appCodeName
Provides the application code name. This property is read-only.

appName
Provides the name of the client browser. This property is read-only.

appVersion
Provides the version of the BlackBerry Browser. This property is read-only.

javaEnabled()
Tests whether the browser supports Java or not.

Syntax navigator.appCodeName

Returns A string specifying the code name of the browser. The value could depend on the
emulation mode.

Example The following code fragment displays the value of the appCodeName property:

document.write("The code name of this application is " +
navigator.appCodeName);

Syntax navigator.appName

Returns A string that specifies the name of the browser. In the case of the BlackBerry device,
the value is always BlackBerry.

Example The following code fragment displays the value of the appName property, which, in
the case of the BlackBerry device, will be BlackBerry:

document.write("The name of the client browser is " +
navigator.appName);

Syntax navigator.appVersion

Returns A string that contains the version of the BlackBerry Browser (for example, 4.1.0).

Example The following code fragment displays version information for the browser:

document.write("The version of the BlackBerry Browser is " +
navigator.appVersion);

Syntax navigator.javaEnabled()

Returns In the case of the BlackBerry Browser, always returns true.

Example The following code fragment runs the function doThis if Java is supported otherwise,
it runs the function doThat:

if (navigator.javaEnabled()) {
doThis();

}
else doThat();
139

BlackBerry Browser Version 4.2 Content Developer Guide
language
Provides the two-letter language code that represents the default language translation of the
browser. This property is read-only.

mimeTypes
Provides the MIME types that the client supports. This property is read-only.

Syntax navigator.language

Returns A string that contains the two-letter language code (For example, en).

Example The following code fragment displays the value of the language property:

document.write("The default language translation of the client
browser is " + navigator.language);

Syntax navigator.mimeTypes[index]
navigator.mimeTypes.length

Parameters index An integer that represents a MIME type contained in the array.

Properties length Specifies the number of MIME types that the client supports.

Returns An array of supported MIME types.

Example The following code fragment displays the type, description, and suffixes properties
for each supported MIME type on a client:

for (i=0; i < navigator.mimeTypes.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,"</TD>",
"<TD>",navigator.mimeTypes[i].type,"</TD>",
"<TD>",navigator.mimeTypes[i].desc,"</TD>",
"<TD>",navigator.mimeTypes[i].suffixes,"</TD>");

}

140

C: JavaScript language reference
preference()
Queries the preferences of the BlackBerry device.

taintEnabled()
Tests whether data tainting is supported or not.

Note: The BlackBerry Browser does not support the setValue parameter.

Syntax navigator.preference(prefName)

Parameters prefName The name of the preference whose value you want to retrieve. Valid
names include:

• general.always_load_images
• security.enable_java
• javascript.enabled
• browser.enable_style_sheets
• autoupdate.enabled
• network.cookie.cookieBehavior
• network.cookie.warnAboutCookies

Returns The value of the specified preference.

Example The following code fragment creates an image link if images are always loaded;
otherwise it creates text link.

If (navigator.preference(general.always_load_images)) {
document.writeln("
");

}
else {

document.writeln("
www.blackberry.com");

}

Syntax navigator.taintEnabled()

Returns In the case of the BlackBerry Browser, this method always returns Boolean false.

Example The following code fragment runs the function doThis if data tainting is supported;
otherwise, it runs the function doThat.

if (navigator.taintEnabled()) {
doThis();

}
else doThat();
141

BlackBerry Browser Version 4.2 Content Developer Guide
userAgent
Extracts the user agent from the user-agent header of the HTTP header. The user agent is used by
servers to identify the client browser. This property is read-only.

Document
The Document object provides access to the elements in an HTML page from within your script. This includes the
properties of every form, link, and anchor (and, where applicable, any subelements), as well as global document
properties, such as background and foreground colors.

Syntax navigator.userAgent

Returns A string that represents the current user-agent.

Example The following code fragment displays user-agent information for the client browser:

document.write("The value of navigator.userAgent is " +
navigator.userAgent);

For example, in the case of a BlackBerry Browser client, this property might return
BlackBerry8700/4.1.0 (device model 8700, running BlackBerry Device Software
Version 4.1.0).

Member type Member name Notes See page

Methods captureEvents() Not supported. —

close() — 144

contextual() Not supported. —

getSelection() Not supported. —

handleEvent() Not supported. —

open() — 147

releaseEvents() Not supported. —

routeEvents() Not supported. —

write() — 148

writeln() — 149

Properties alinkColor Read-only. 143

anchors Not supported. Returns an empty array. —

applets Not supported. Returns an empty array. —

bgColor Read-only. 143

classes Not supported. Returns an empty array. —

cookie Read-write. 144

domain Read-only. 145

embeds Not supported. Returns an empty array. —

fgColor Read-only. 145

formName Read-only. 145

forms Read-only. 146
142

C: JavaScript language reference
alinkColor
Provides the color that is used to identify active links in the document. This property is read-only.

bgColor
Returns the color that is used for the background of the active document. This property is read-only.

Properties (continued) height Treated as a constant. Returns the height of the device screen, in pixels. —

ids Not supported. Returns an empty array. —

images Not supported. Returns an empty array. —

lastModified Read-only. 146

linkColor Read-only. 146

plugins Not supported. Returns an empty array. —

referrer Read-only. 147

tags Not supported. Returns an empty array. —

title Read-write. 147

URL Read-only. 148

vlinkColor Read-only. 148

width Treated as a constant. Returns the width of the device screen, in pixels. —

Syntax document.alinkColor

Returns A string that represents the active link color. Colors can be represented as a string
literal (for example, teal) or as a hexidecimal triplet (for example, #0055FF).

Example The following code fragment returns the color that is used to identify active links in
the active document:

document.write("Active links in this document are represented
using the color " + document.alinkColor);

See also linkColor
vlinkColor

Syntax document.bgColor

Returns A string that represents the background color of the document. Colors can be
represented as a string literal (for example, teal) or as a hexidecimal triplet (for
example, #0055FF).

Example The following code fragment returns the color that is used as the background color
in the active document:

document.write("The background color of this document is " +
document.bgColor);

See also fgColor

Member type Member name Notes See page
143

BlackBerry Browser Version 4.2 Content Developer Guide
close()
Closes a previously opened output stream.

cookie
Provides a report that details all visible and unexpired cookies that are associated with the specified
document. This is a writable property.

Syntax document.close()

Example The following code fragment calls document.close() to close a stream that was
opened with document.open(). The document.close() method forces the content of
the stream to display in the window.

function doThis() {
var string1 = "Hi mom!";
var string2 = "Bye mom!";
document.open();
document.write(string1 + "<P>" + string2);
document.close();

}

See also open()

Syntax document.cookie

Returns A comma-separated list that contains the cookies for the active document.

Examples The following code fragment displays information about visible and unexpired
cookies:

document.write("The following cookies are associated with this
document:

document.writeln(document.cookie)

The following code fragment creates a cookie

function createCookie(name,value,days)
{

if (days)
{

var date = new Date();
date.setTime(date.getTime()+(days*24*60*60*1000));
var expires = "; expires="+date.toGMTString();

}
else var expires = "";
document.cookie = name+"="+value+expires+"; path=/";

}

144

C: JavaScript language reference
domain
Provides the domain of the server that served the active document. This property is read-only.

fgColor
Returns the color that is used for the foreground (the text) of the active document. This property is
read-only.

formName
Provides a specific form in the active document, referring to it by the Name attribute of the HTML
<form> tag. This property is read-only.

Syntax document.domain

Returns A string that contains the domain name of the server that served the document.

Example The following code fragment returns the domain name of the hosting server:

document.write("This document originated from the " +
document.domain + "domain.");

Syntax document.fgColor

Returns A string that represents the foreground text color. Colors can be represented as a
string literal (for example, teal) or as a hexidecimal triplet (for example, #0055FF).

Example The following code fragment returns the text color that is used in the active
document:

document.write("The text color of this document is " +
document.fgColor);

See also bgColor

Syntax document.formName

Parameters formName Represents the value of the Name attribute for the HTML <form>
tag.

Returns The form associated with the given formName.

Example The following code fragment submits a form called loginForm:

document.loginForm.submit();

See also forms
Form
145

BlackBerry Browser Version 4.2 Content Developer Guide
forms
Provides a list of all the form objects in the active document. This property is read-only.

lastModified
Extracts the date that the document was last modified from the HTTP header. This property is read-
only.

linkColor
Returns the color that the active document uses to identify links. This property is read-only.

Syntax document.forms[index]
document.forms.length

Parameters index An integer or string that represents a form that is contained in the
array.

Properties length Specifies the number of forms contained in the active document.

Returns An array that contains references to all the forms found in the active document.

Example The following code fragment submits the first form in the forms array:

document.forms[0].submit();

See also formName
Form

Syntax document.lastModified

Returns A string representing the date that the document was last modified.

Example In the following code fragment, lastModified is used in a <script> tag at the end of
an HTML file to display the modification date of the page:

document.write("This page updated on " +
document.lastModified);

Syntax document.linkColor

Returns A string that represents the link color. Colors can be represented as a string literal
(for example, teal) or as a hexidecimal triplet (for example, #0055FF).

Example The following code fragment returns the color that is used as the link color in the
active document:

document.write("Hyperlinks in this document are represented
using the color " + document.linkColor);

See also alinkColor
vlinkColor
146

C: JavaScript language reference
open()
Opens the output stream to the current document to collect data from the write() and writeln()
methods.

referrer
Provides the URL of the document through which the user arrived at the active document, if it exists.
This property is read-only.

title
Retrieves or specifies the title of the active document. This is a writable property.

Syntax document.open()

Example The following code fragment calls document.close() to close a stream that was
opened with document.open(). The document.close() method forces the content of
the stream to display in the window.

function doThis() {
var string1 = "Hi mom!";
var string2 = "Bye mom!";
document.open();
document.write(string1 + "<P>" + string2);
document.close();

}

See also close()

Syntax document.referrer

Returns • If the user arrived at the active document from another document, a string that
contains the URL of the referring document is returned.

• If the user typed the URL or reached the active document through some other
means, a null string is returned.

Example In the following code fragment, the getReferrer() function is called from the active
destination document. It returns the URL of the source document:

function getReferrer() {
return document.referrer;

}

Syntax document.title[="title"]

Parameters title The name of the document, as it appears in the title bar of the
BlackBerry Browser.

Returns A string that contains the title of the document, as specified by the <title> element.

Example The following code fragment sets the title of the active document as “BlackBerry
Home Page”:

document.title="BlackBerry Home Page";
147

BlackBerry Browser Version 4.2 Content Developer Guide
URL
Retrieves the complete URL of the active document. This property is read-only.

vlinkColor
Returns the color that the active document uses to identify links previously visited by the user. This
property is read-only.

write()
Writes HTML expressions to the specified document.

Syntax document.URL

Returns A string that contains the URL of the active document.

Example The following code fragment displays the URL of the current document:
document.write("The current URL is " + document.URL);

See also window.location

Syntax document.linkColor

Returns A string that represents the visited link color. Colors can be represented as a string
literal (for example, teal) or as a hexidecimal triplet (for example, #0055FF).

Example The following code fragment returns the color that is used as the link color in the
active document:

document.write("Visited links in this document are represented
using the color " + document.vlinkColor);

See also alinkColor
linkColor

Syntax document.write(Expression1 [, Expression2, ...]);

Parameters Expression1 An HTML expression. Additional expressions can be included.

Example In the following code fragment, write() takes several arguments, including strings, a
numeric, and a variable, and displays the string “Hello world testing 123”:

var mystery = "world";
msgWindow.document.write("Hello ", mystery, " testing ", 123);

In the following code fragment, write() takes two arguments to display the string
“Hello world....” The first argument is an assignment expression, and the second
argument is a string literal.

msgWindow.document.write(mystr = "Hello " + "world...");

In the following code fragment, the write method takes a single argument that is a
conditional expression. If the value of the variable age is less than 18, the method
displays “Minor.” If the value of age is greater than or equal to 18, the method
displays “Adult.”

msgWindow.document.write(status = (age >= 18) ? "Adult" :
"Minor");

See also writeln()
148

C: JavaScript language reference
writeln()
Writes HTML expressions to the specified document, and places a new line character at the end of
the expression.

Form
The Form object lets you access the elements of an HTML form that is used to collect information from users.

Syntax document.writeln(Expression1 [, Expression2, ...]);

Parameters Expression1 An HTML expression. Additional expressions can be included.

Example The following code displays the type, description, and suffixes properties for each
supported MIME type on a client:

for (i=0; i < navigator.mimeTypes.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,
"<TD>",navigator.mimeTypes[i].type,
"<TD>",navigator.mimeTypes[i].description
"<TD>",navigator.mimeTypes[i].suffixes);

}

See also write()

Member type Member name Notes See page

Methods handleEvent() This method is not supported. —

reset() — 154

submit() — 155

Event handlers onClick — 153

onReset — 153

onSubmit — 154

Properties action Read-write. 150

elements Read-only. 150

length Read-only. 151

method Read-only. 152

name Read-only. 152

target Read-write. 155
149

BlackBerry Browser Version 4.2 Content Developer Guide
action
Accesses the Action attribute of an HTML <form> element, which defines the URL to which the form
is submitted. This is a writable property.

elements
Provides a list of the elements that are found in the form. This property is read-only.

Syntax formName.action[="serverURL"]

Parameters formName The form for which data is being submitted. This parameter can be:

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

serverURL The URL of the server to which form field input data is sent. This
parameter can specify a Cell Global Identity (CGI) or LiveWire
application on the server; it can also be a mailto: URL if the form is to
be mailed.

Returns A string that describes the URL the form submits data to, unless serverURL is set.

Example The following code fragment specifies the URL to which loginForm submits data:

document.loginForm.action="urlName";

See also document.formName
document.forms

Syntax formName.elements[index]
formName.elements.length

Parameters formName The form that contains the listed elements. This parameter can be:

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

index An integer that represents an object of the form, or the name of the
element object as specified by its Name attribute.

Properties length See “length” on page 151 for more information.

Returns An array that contains each element of the form.

Example The following code fragment writes a list of the elements contained in the form
loginForm:

document.write("This form contains the following HTML
elements:");

for (i=0; i < loginForm.elements.length; i++) {
document.write(loginForm.elements[i]);

}

See also length
document.formName
document.forms
150

C: JavaScript language reference
encoding
Specifies the value of the Enctype attribute for the HTML <form> tag, which provides the MIME
encoding of the form. This property is read-only.

length
Specifies the number of elements in the form. This property is read-only.

Syntax formName.encoding

Parameters formName The form for which the encoding type is being retrieved. This
parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

Returns A string that indicates the MIME encoding of the form.

Example The following function returns the value of the loginForm encoding property:

function getEncoding() {
 return document.loginForm.encoding;
}

See also document.formName
document.forms

Syntax • formName.length

• formName.elements.length

Parameters formName The form for which the number of elements is being retrieved. This
parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

Returns An integer that represents the number of elements of the form.

Example The following code fragment writes a list of the elements contained in the form
loginForm:

document.write("This form contains the following HTML
elements:");

for (i=0; i < loginForm.length; i++) {
document.write(loginForm.elements[i]);

}

See also elements
document.formName
document.forms
151

BlackBerry Browser Version 4.2 Content Developer Guide
method
Returns the value of the Method attribute of the HTML <form> element, which defines the method
used to submit the form data to the server. This property is read-only.

name
Returns the value of the Name attribute of the HTML <form> element, which provides the name of
specified form. This property is read-only.

Syntax formName.method

Parameters formName The form for which the submit method is being queried. This
parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

Returns A string that represents the submit method. This string can have a value of either
GET or POST.

Example The following code fragment returns the submit method for the loginForm form:

document.write("This form submits data to the server using the
" + loginForm.method + " method");

See also document.formName
document.forms

Syntax formName.name

Parameters formName The form for which the value of the Name attribute is being retrieved.
This parameter is an element in the document.forms array.

Returns An array that contains each element of the form.

Example The following code fragment writes a list of each of the forms found in the active
document:

document.write("This document contains the following HTML
forms:");

for (i=0; i < document.forms.length; i++) {
document.write(document.forms[i].name);

}

See also document.formName
document.forms
152

C: JavaScript language reference
onClick
Specifies the event that follows when an object on click event occurs.

onReset
Specifies the event that follows a reset action.

Syntax formName.onClick[="event"]

Parameters formName The name of the form. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

event The event that is performed.

Returns A string describing the event which has been previously specified to occur when a
form object is clicked, unless event is specified.

Example The following code fragment shows an onclick event handler that calls the function
isValidAddress() when the Calculate button is clicked.

<INPUT TYPE="button" VALUE="Calculate"
onClick="compute(this.form)">

See also document.formName
document.forms

Syntax formName.onReset[="event"]

Parameters formName The name of the form. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

event The event that is performed.

Returns A string describing the event which has been previously specified to occur when the
form is reset, unless event is specified.

Example The following code fragment shows an onReset event handler that displays an alert
dialog informing the user that default form values have been reset.

<FORM NAME="form1" onSubmit="return isValidAddress()"
onReset="alert("Default values have been
restored")">

Please enter your email address:
<INPUT TYPE="text" NAME="address" SIZE=10><P>
<INPUT TYPE="submit" VALUE="Done" NAME="submit1">
<INPUT TYPE="reset" VALUE="Clear Form" NAME="Reset1">

</FORM>

See also document.formName
document.forms
153

BlackBerry Browser Version 4.2 Content Developer Guide
onSubmit
Specifies the event that follows a submit action.

reset()
Clears user input and resets the default values of the form.

Syntax formName.onSubmit[="event"]

Parameters formName The name of the form. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

event The event that is performed.

Returns A string describing the event which has been previously set to occur when the form
is submitted, unless event is specified.

Example The following code fragment shows an onSubmit event handler that calls the
function isValidAddress(), which determines whether the email address entered is
valid before the form data is submitted to the server.

<FORM NAME="form1" onSubmit="return isValidAddress()"
onReset="alert("Default values have been restored">

Please enter your email address:
<INPUT TYPE=”text” NAME=”address” SIZE=10><P>
<INPUT TYPE=”submit” VALUE=”Done” NAME=”Submit”>
<INPUT TYPE=”reset” VALUE=”Clear Form” NAME=”Reset”>

</FORM>

See also document.formName
document.forms

Syntax formName.reset()

Parameters formName The name of the form to be reset. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

Example The following code fragment extracts data from the form located below. If the data
is not entered properly (for example, CA or AZ is not entered), the form is reset.

function isValidAddress(){
if (document.loginForm.address == .value == 'CA' ||
textObject.value == 'AZ') {

alert('Nice input');
}
else { document.loginForm.reset() }

See also document.formName
document.forms
154

C: JavaScript language reference
submit()
Submits the specified form. This is equivalent to the user clicking a Submit button.

target
Specifies or returns the target window that responses are sent to after a form is submitted.

This is a writable property.

Syntax formName.submit()

Parameters formName The name of the form to be submitted. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

Example The following code fragment submits a form called loginForm:

document.loginForm.submit();

If loginForm is the first form you create, you also can submit it as follows:

document.forms[0].submit();

See also document.formName
document.forms

Note: Because the BlackBerry Browser is a single document interface (that is, it never displays more than one browser
window at a time), setting a target essentially has no effect on content displayed in the BlackBerry Browser.

Syntax formName.target[="windowName’]

Parameters formName The name of the form to be submitted. This parameter can be either

• the value of the Name attribute for the HTML <form> tag

• an element in the document.forms array

windowName The name of the window to which responses are sent.

Returns A string that represents the name of the target window.

Example The following code fragment specifies that responses to the loginForm form are
displayed in the msgWindow window:

document.loginForm.target="msgWindow";
155

BlackBerry Browser Version 4.2 Content Developer Guide
Screen
The Screen object returns information about the dimensions and color depth of the BlackBerry device display.

availHeight
Retrieves the height of the BlackBerry device screen. This property behaves identically to the height
property. This property is read-only.

availWidth
Retrieves the width of the BlackBerry device screen. This property behaves identically to the width
property. This property is read-only.

Member type Member name Notes See page

Properties availHeight Read-only. 150

availLeft Treated as a constant. Returns 0. —

availTop Treated as a constant. Returns 0. —

availWidth Read-only. 150

colourDepth Read-only. 151

height Read-only. 152

pixelDepth Read-only. 152

width Read-only. 155

Syntax screen.availHeight

Returns An integer that represents the screen height, in pixels.

Example The following code fragment returns the screen height:

document.write("The screen is " + screen.availHeight + " pixels
high.");

See also availWidth
height

Syntax screen.availWidth

Returns An integer that represents the screen width, in pixels.

Example The following code fragment returns the screen width:

document.write("The screen is " + screen.availWidth + " pixels
wide.");

See also availHeight
width
156

C: JavaScript language reference
colourDepth
Retrieves the bit depth of the color palette. This property behaves identically to the pixelDepth
property. This property is read-only.

height
Retrieves the height of the screen. This property behaves identically to the availHeight property.
This property is read-only.

pixelDepth
Returns the bit depth of the palette. This property behaves identically to the colourDepth property.
This property is read-only.

Syntax screen.colourDepth

Returns • The bit depth of the device color palette, if it uses one.

• If no palette is used, this property reflects the value of pixelDepth.

Example The following code fragment returns the bit depth of the color palette:

document.write("The BlackBerry device display has a pixel depth
of " + screen.colourDepth);

See also pixelDepth

Syntax screen.height

Returns An integer that represents the screen height, in pixels.

Example The following code fragment returns the screen height:

document.write("The screen is " + screen.height + " pixels
high.");

See also availHeight

Syntax screen.pixelDepth

Returns An integer that represents the color resolution, in bits per pixel, of the display.

Example The following code fragment returns the screen height:

document.write("The screen has a pixel depth of " +
screen.pixelDepth + " bits per pixel.");

See also colourDepth
157

BlackBerry Browser Version 4.2 Content Developer Guide
width
Retrieves the width of the screen. This property behaves identically to the availWidth property. This
property is read-only.

Window
The Window object is created automatically when the browser encounters a <body> or <frame> tag, and returns
information about the window.

Syntax screen.width

Returns An integer that represents the width of the screen, in pixels.

Example The following code fragment returns the screen width:

document.write("The screen is " + screen.width + " pixels
wide.");

See also availWidth

Member type Member name Notes See page

Methods alert() — 160

atob() — 160

back() — 160

blur() Stub implementation. This method has no effect. —

btoa() — 161

captureEvents() Not supported. —

clearInterval() — 161

clearTimeout() — 162

close() — 162

confirm() — 163

disableExternalCapture() Not supported. —

enableExternalCapture() Not supported. —

find() Not supported. —

focus() Not supported. —

back() — 170

handleEvent() Not supported. —

home() — 165

moveBy() Stub implementation. This method has no effect. —

moveTo() Stub implementation. This method has no effect. —

open() — 166

print() Stub implementation. This method has no effect. —

prompt() — 167

releaseEvents() Not supported. —

resizeBy() Stub implementation. This method has no effect. —
158

C: JavaScript language reference
Methods (continued) resizeTo() Stub implementation. This method has no effect. —

routeEvent() Not supported. —

scroll() Stub implementation. This method has no effect. —

scrollBy() Stub implementation. This method has no effect. —

scrollTo() Stub implementation. This method has no effect. —

setHotKeys() Stub implementation. This method has no effect. —

setInterval() — 168

setTimeout() — 168

setZOptions() Stub implementation. This method has no effect. —

stop() — 169

Properties blackberry Read-only. 161

closed Treated as a constant. Returns Boolean false. —

crypto Not supported. —

defaultStatus Read-write. 163

document Read-only. 163

frames Read-only. 164

history Read-write. 165

innerHeight Treated as a constant. Returns the screen height. —

innerWidth Treated as a constant. Returns the screen width. —

length Read-only. 166

location Read-only. 166

locationbar Not supported. —

menubar Not supported. —

name Not supported. —

offscreenBuffering Treated as a constant. Returns Boolean false. —

opener Not supported. —

outerHeight Treated as a constant. Returns the screen height. —

outerWidth Treated as a constant. Returns the screen width. —

pageXOffset Treated as a constant. Returns 0. —

pageYOffset Treated as a constant. Returns 0. —

parent Read-write. 167

personalbar Not supported. —

screenX Treated as a constant. Returns 0. —

screenY Treated as a constant. Returns 0. —

scrollbars Not supported. —

self Read-write. 167

stop() Not supported. —

statusbar Not supported. —

toolbar Not supported. —

top Read-write. 169

window Read-write. 169

Member type Member name Notes See page
159

BlackBerry Browser Version 4.2 Content Developer Guide
alert()
Displays a standard alert dialog box with an OK button.

atob()
Decodes a given Base64 string.

back()
Displays the previous URL in the history list. This method is equivalent to the user clicking Back in
the BlackBerry Browser menu or clicking the Escape key during a browser session.

Syntax window.alert("message")

Parameters message A string, or a property of an existing object, that is displayed as the
dialog box message.

Example The following code fragment displays an alert dialog box informing users that they
did not enter information properly.

window.alert("Please enter a name that is 8 characters or
less");

See also confirm()
prompt()

Syntax window.atob(string)

Parameters string The string to be decoded.

Example The following code fragment decodes a variable named encodedURL into Base64
and assigns the result to the variable decodedURL:

var decodedURL=window.atob(encodedURL);

See also btoa()

Syntax window.back()

Example The following code fragment adds a custom button to an HTML page that displays
the previous item in the history list:

<INPUT TYPE="button" VALUE="Back" onClick="window.back()">

See also close()
forward()
history
window.history.back()
window.history.previous
160

C: JavaScript language reference
blackberry
Acts a pointer to the BlackBerry object. This property is read-only.

btoa()
Encodes a given string to Base64.

clearInterval()
Clears a repeating timer.

Syntax window.blackberry

Returns A pointer to the BlackBerry object.

Example The following code fragment displays the value of the network property:

document.write("The client BlackBerry device is communicating
on the " + window.blackberry.network + " wireless
network.");

See also BlackBerry

Syntax window.btoa(string)

Parameters string The string to be encoded.

Example The following code fragment encodes a URL into Base64 and assigns the result to
the variable encodeURL:

var encodeURL=window.btoa(URL)

See also atob()

Syntax window.clearInterval(intervalID)

Parameters intervalID The ID (specified when the interval timer was created using
setInterval()) of the interval to be cleared.

Example After a user clicks the Start button, the following code fragment writes the given
string every five seconds (5,000 milliseconds). The user must click the Stop button
to cancel the timer and stop new lines from being written.

<input type="button" value="Start"
onclick="timerID=setInterval(document.writeln("the
timer is on"), 5000);" />

<input type="button" value="Stop"
onclick="timerID=clearInterval(timerID);" />

See also setInterval()
161

BlackBerry Browser Version 4.2 Content Developer Guide
clearTimeout()
Clears a nonrepeating timer.

close()
Closes the active window, going back one element in history.

Syntax window.clearTimeout(timeoutID)

Parameters timeoutID The identifier (set using setTimeout()) that specifies the timeout
evaluation that is cleared.

Example The following code fragment runs the displayAlert() function five seconds (5,000
milliseconds) after the user clicks a button. If the user clicks the second button
before the message is displayed, the timeout is canceled and the message is not
displayed.

<INPUT TYPE="button" VALUE="5-second reminder"
NAME="remind_button"
onClick="timerID=setTimeout('displayAlert()',5000)"
>

<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
NAME="remind_disable_button"
onClick="clearTimeout(timerID)">

See also setTimeout()

Note: Because the BlackBerry Browser is a single document interface, there are no active or inactive windows;
instead, it stacks windows as successive items in the history list. If a user closes the current window, the previous
document appears. The only exception is when the current document is the first item in the history. In this case,
closing the window causes users to exit the browser.

Syntax window.close()

Example The following code fragment closes the active window and displays the previous
page in the history list:

window.close()

See also open()
162

C: JavaScript language reference
confirm()
Displays a standard confirmation dialog box with an OK button and a Cancel button.

defaultStatus
Defines the default message that is displayed in the status bar. You can override this message using
the status property. This is a writable property.

document
Specifies the Document object that is contained within the window. This property is read-only.

Syntax window.confirm("message")

Parameters message A string, or a property of an existing object, that is displayed as the
confirmation message.

Returns • If users click OK, the method returns true.

• If users click Cancel, the method returns false.

Example The following code fragment displays a confirmation dialog box asking users to
confirm that they want to submit a form:

window.confirm("Are you sure you want to submit this
information?")

See also alert()
prompt()

Syntax window.defaultStatus = "message"

Parameters message The message that is displayed by default in the status bar.

Example The following code fragment sets the default status message:

window.defaultStatus = "Click the link to go to the BlackBerry
homepage.";

See also stop()

Syntax window.document.propertyName
window.document.methodName

Parameters propertyName The defaultStatus, status, length, or name property of the
Document object.

methodName Any method associated with the Document object.

Example In the following code fragment, the write() method takes several arguments,
including strings, a numeric, and a variable, and diplays the string "Hello world
testing 123":

var mystery = "world" msgWindow.document.write("Hello ",
mystery, " testing ", 123);

See also Document
163

BlackBerry Browser Version 4.2 Content Developer Guide
forward()
Displays the next element in the history list of the browser. This method is equivalent to the user
clicking Forward in the BlackBerry Browser menu.

frames
Specifies the frames that the current document contains. This property is read-only.

Syntax window.forward()

Example The following code adds a custom button to an HTML page that displays the next
item in the history list:

<INPUT TYPE="button" VALUE="Forward"
onClick="window.forward()">

See also back()
history
window.history.forward()
window.history.next

Note: The BlackBerry Browser renders framesets by stacking frames vertically on a single page in the order in which
they are encountered, using the full width of the device screen and as much vertical space as is required to contain
all the frames.

Syntax window.frames[index]

Parameters index An integer that represents a child frame in the frameset, or the name of
the Frame object as specified by its name attribute.

Returns An array that contains the frame(s) associated with the document.

Example The following code fragment writes a list of the frames that are part of the current
document:

document.write("You have visited the following URLs during this
session:");

for (i=0; i < window.length; i++) {
document.write(window.frames[i]);

}

164

C: JavaScript language reference
history
Retrieves an array of recently accessed URLs from the History object. This property is read-only.

home()
Returns to the page that the user set as the browser home page.

Syntax window.history[index]
window.history.propertyName
window.history.methodName

Parameters index An integer that represents a URL contained in the history list.

propertyName The current, length, next, or previous property associated with
the History object.

methodName The back(), forward(), or go() method associated with the History
object.

Returns An array that contains each element in the history list.

Example The following code fragment writes a list of the URLs that the user has visited
during the current session:

document.write("You have visited the following URLs during this
session:");

for (i=0; i < window.history.length; i++) {
document.write(window.history[i]);

}

See also back()
forward()
window.history.back()
window.history.forward()
window.history.go()

Syntax window.home()

Example The following code fragment displays the home page, as it is specified in the
browser settings:

<INPUT TYPE="button" VALUE="Go to your homepage"
onClick="window.self.home()">

See also back()
forward()
165

BlackBerry Browser Version 4.2 Content Developer Guide
location
Retrieves or specifies the URL of the current window. This is a writable property.

length
Returns the number of frames in a parent window. This property is read-only.

open()
Opens a new browser window.

Syntax windowReference.location[.propertyName]
windowReference.location.methodName(parameters)

Parameters windowReference The name of a window, or a synonym such as top or parent.

propertyName The defaultStatus, status, length, or name property of the
window object.

methodName Any method associated with the window object.

Returns A string containing the URL that is currently displayed in the specified window.

Example The following code fragment points the top window to the given URL:

top.location="http://www.blackberry.com/";

See also document.URL

Note: The BlackBerry Browser renders framesets by stacking frames vertically on a single page in the order in which
they are encountered, using the full width of the device screen and as much vertical space as is required to contain
all the frames.

Syntax windowReference.length

Parameters windowReference The name of a window, or a synonym such as top or parent.

Returns An array containing the frame(s) that are associated with the document.

Example The following code fragment writes a list of the frames that are part of the current
document:

document.write("This page contains the following frames:");
for (i=0; i < window.length; i++) {

document.write(window.frames[i]);
}

Syntax [windowName]=[window.]open(URL)

Parameters windowName The name of the new window.

URL A string that represents the URL to be displayed in the child window.

Example The following code fragment opens a new window that displays the BlackBerry web
site:

newWin=window.open("http://www.blackberry.com");

See also close()
166

C: JavaScript language reference
parent
A reference to the parent window. If no parent window exists, this property points to the current
active window. This is a writable property.

prompt()
Displays a prompt dialog box that prompts users for input.

self
A pointer to the current active window. This is a writable property.

Syntax parent.propertyName

parent.methodName

Parameters propertyName Any property that is associated with the Window object.

methodName Any method that is associated with the Window object.

Example The following code fragment closes the parent window when users click a button:

<INPUT TYPE="button" VALUE="Close the parent window"
onClick="window.parent.close()">

See also self
window

Syntax window.prompt(message [,inputDefault])

Parameters message A string, or a property of an existing object, that is displayed as
the prompt message.

inputDefault Any string that represents the default value of the input field.

Example The following code fragment displays a dialog box that prompts users to specify the
number of donuts they want, and sets the default number to 12.

mainWindow.prompt("Enter the number of donuts you want to
order:", 12);

See also alert()
confirm()

Syntax self.propertyName
self.methodName

Parameters propertyName Any property that is associated with the Window object.

methodName Any method that is associated with the Window object.

Example The following code fragment closes the current active window:

self.close();

See also parent
window
167

BlackBerry Browser Version 4.2 Content Developer Guide
setInterval()
Sets a timer that lets you evaluate an expression at regular intervals.

setTimeout()
Sets a non-repeating timer that lets you evaluate an expression after a specified amount of time.

Syntax intervalID=window.setInterval(expression, msec)

Parameters intervalID An identifier that is used only to cancel the timeout evaluation with
clearInterval().

expression The string expression or property of an existing object to be
evaluated.

msec The time in milliseconds after which the expression is evaluated.

Example The following code fragment writes the given string every five seconds (5,000
milliseconds) after the user clicks the Start button. Users must click the Stop button
to cancel the timer and stop new lines from being written.

<input type="button" value="Start"
onclick="timerID=setInterval(document.writeln("the
timer is on"), 5000);" />

<input type="button" value="Stop"
onclick="timerID=clearInterval(timerID);" />

See also clearInterval()

Syntax timeoutID=window.setTimeout(expression, msec)

Parameters timeoutID An identifier that is used only to cancel the timeout evaluation with
clearTimeout().

expression The string expression or property of an existing object to be
evaluated.

msec The time in milliseconds after which the expression is evaluated.

Example The following code fragment writes the given string five seconds (5,000
milliseconds) after the user clicks a button. If the user clicks the second button
before the string is displayed, the timeout is canceled and the string is not written.

<INPUT TYPE="button" VALUE="Start"
onClick="timerID=setTimeout(document.writeln("five
seconds have passed")',5000)">

<INPUT TYPE="button" VALUE="Clear"
onClick="clearTimeout(timerID)">

See also clearTimeout()
168

C: JavaScript language reference
stop()
Stops the current download. This method is equivalent to the user clicking Stop in the BlackBerry
Browser menu.

top
Contains a reference to the top window. Access to window.top provides only a URL, not the Window
object itself.

Because the BlackBerry Browser is a single document interface, it attempts to maintain some idea of
window relationships. In many cases, window.top points to the current window and is therefore
equivalent to the window property; however, if users arrived at the current window from a frameset,
window.top points to the parent frameset.

This is a writable property.

window
Contains a reference to the current window. Using the window property lets you invoke methods or
call properties on the current window without confusion when multiple browser windows are open.

Because the BlackBerry Browser is a single document interface, a new window is opened each time
a new URL is opened.

This is a writable property.

Syntax window.stop()

Example The following code fragment adds a button that lets users stop the current download.

<input type=button value="STOP" onClick="stop();">

Syntax top.propertyName
top.methodName

Parameters propertyName Any property that is associated with the Window object.

methodName Any method that is associated with the Window object.

Example The following code fragment sets the background color of a document called
myDocument to red.

top.myDocument.bgColor="red";

See also self
window

Syntax window.propertyName
window.methodName

Parameters propertyName Any property that is associated with the Window object.

methodName Any method that is associated with the Window object.

See also self
top
169

BlackBerry Browser Version 4.2 Content Developer Guide
Window History
The Window History object stores an array of the URLs that the user visited during the current browser session.

back()
Displays the previous URL in the history list of the browser. This method is equivalent to the user
clicking Back in the BlackBerry Browser menu or clicking the Escape key during a browser session.

current
Returns the complete URL of the current history entry. This property is read-only.

Members Name Notes See page

Methods back() — 170

forward() — 171

go() — 171

Properties current Read-only. 170

length Read-only. 171

next Read-only. 172

previous Read-only. 172

Syntax window.history.back()

Example The following code fragment adds a custom button to an HTML page that displays
the previous item in the history list:

<INPUT TYPE="button" VALUE="Back"
onClick="window.history.back()">

See also forward()
previous
window.back()
window.close()
window.history

Syntax window.history.current

Returns The complete URL of the current history entry.

Example The following code fragment displays the URL of the current item in the history list:

document.write("You are currently visiting the following
URL:");

document.write(window.history.current);

See also window.history
170

C: JavaScript language reference
forward()
Displays the next element in the history list of the browser. This method is equivalent to the user
clicking Forward in the BlackBerry Browser menu.

go()
Causes the browser to display the URL that is the specified number of URLs before or after the
current item in the history list.

length
Returns the number of URLs in the history list. This property is read-only.

Syntax window.history.forward()

Example The following code adds a custom button to an HTML page that displays the next
item in the history list:

<INPUT TYPE="button" VALUE="Forward"
onClick="window.history.forward()">

See also back()
next
window.back()
window.history

Syntax window.history.go(number)

Parameters number The position of the new URL in the history list relative to the current item.
A positive value moves forward in the history list; a negative value moves
backward.

Example The following code fragment adds a custom button that causes the browser to
display the URL three positions earlier than the current URL in the history list:

<INPUT TYPE="button" VALUE="Leap back three pages!"
onClick="window.history.go(-3)">

See also window.history

Syntax window.history.length

Returns An array containing the frame(s) that are associated with the document.

Example The following code fragment writes the URLs currently in the history list:

document.write("You have visited the following URLs during this
session:");

for (i=0; i < window.history.length; i++) {
document.write(window.history[i]);

}

See also window.history
171

BlackBerry Browser Version 4.2 Content Developer Guide
next
Retrieves the URL of the next entry in the history list. This property is read-only.

previous
Retrieves the URL of the previous entry in the history list. This property is read-only.

Syntax window.history.next

Returns The next entry in the history list. If this property returns a null value, the current URL
is the last item in the list.

Example The following code adds a custom button to an HTML page that displays the next
item in the history list:

var nextURL = window.history.next;
if(nextURL <> ""){

document.write("The Forward menu item will take you to" +
nextURL);

}
else {

document.write(“The current URL is the last item in the
history list.”)

}

See also forward()
window.history

Syntax window.history.previous

Returns The next entry in the history list. If this property returns a null value, the current URL
is the first item in the list.

Example The following code adds a custom button to an HTML page that displays the next
item in the history list:

var previousURL = window.history.previous;
if(previousURL <> ""){

document.write("The Back button will take you to" +
PreviousURL);

}
else {

document.write(“The current URL is the first item in the
history list.”)

}

See also back()
window.history
172

D

WMLScript language reference

Using WMLScript
WML is a broad, fairly easy-to-use language that permits content developers to create reasonable content that can
be viewed on all WAP browsers. Unfortunately, it lacks many aspects of a true scripting language.

The solution is WMLScript, a wireless scripting language that can co-exist with WML decks. It is similar to
JavaScript, and is a modified subset of ECMAScript.

WMLScripts are independent files called as external references within WML decks. They are compiled into
bytecode at runtime on the server before they are sent to the WAP browser. Like C, C++, and Java, the language is
case sensitive and has a construct that is similar to C.

The format of a WMLScript function is as follows:

extern function NAME([PARAMETERS(S)])
{

// body of function
}

The extern keyword makes the function public to external files. Do not include extern on functions that are only
called from within the script.

Parameter passing is fairly lax where type is not specified in the parameter list. The caller of the function is
responsible for making sure that parameters passed to a function are in the expected format and sequence.

See “Scripting Basics” on page 193 for information about WMLScript reserved words and supported statements,
operators, and expressions.

Using WMLScript
WMLScript libraries

Note: The BlackBerry Browser currently does not support floating-point values.

BlackBerry Browser Version 4.2 Content Developer Guide
WMLScript libraries
The strength of WMLScript is largely contained with the function libraries. The libraries include functions to deal
with numeric values, dialog boxes and alerts, strings, relative and absolute URLs, and the browser.

The following WMLScript libraries are supported:

Lang
The Lang library contains 15 core library functions. For example, you can perform operations on integers, create
random numbers, create absolute values, stop code that is currently running, and determine support parameters.

Library Description See page

Lang The Lang library contains 15 core library functions. For example, you can perform operations on integers,
create random numbers, create absolute values, stop code that is currently running, and determine
support parameters.

174

Dialogs The Dialogs library contains three dialog box handlers that are used to display alert, confirmation, and
prompt dialog boxes. Users must respond to the displayed message or prompt in order for the SCRIPT to
continue running.

178

String The String library contains 14 functions that can be used to manipulate strings. 179

URL The URL library contains 14 functions that manipulate URLs. For example, you can extract the various
portions of the URL, escape and unescape special characters in the URL, determine the referring URL, and
so on.

185

Browser The Browser library contains seven functions that can be used to access the information that is associated
with the WML cards. For example, you can return to a previously viewed card, go to a new card, refresh a
card, and so on.

190

Function Description See page

abort() Aborts the WMLScript and returns the passed string to the caller. 175

abs() Returns the absolute value of the passed number. 175

characterSet() Returns a value that identifies the supported character set. 175

exit() Exits the script and returns the passed message to the caller. 175

isInt() Tests whether the passed string can be converted into an integer value using parseInt(). 176

max() Determines the maximum value of two passed values in either integer or floating-point form. 176

maxInt() Returns the maximum value of an integer. 176

min() Returns the minimum value of two passed values in either integer or floating-point form. 176

minInt() Returns the minimum value of an integer. 177

parseInt() Converts a string into an integer value. 177

random() Returns a random number between 0 and the passed value. 177

seed() Initializes the random number generator. 177
174

D: WMLScript language reference
abort()
Aborts the WMLScript and returns the passed string to the caller.

abs()
Returns the absolute value of the passed number.

characterSet()
Returns a value that identifies the supported character set.

Visit http://www.iana.org/assignments/character-sets for a current list of character sets.

exit()
Exits the script and returns the passed message to the caller.

Syntax Lang.abort(ErrorMessage);

Parameters ErrorMessage An error message that indicates the reason the script was aborted.

Returns No return value.

Example The following code fragment aborts the script and displays the given string:

Lang.abort("Script failure on line 123");

Syntax Lang.abs(Number);

Parameters Number An integer or float value.

Returns The absolute value returned as an integer or float value.

Example The following code fragment returns positive “98765“:

var i_ret = Lang.abs(-98765);

The following code fragment returns positive “987.65“:

var f_ret = Lang.abs(-987.65);

Syntax Lang.characterSet();

Returns The numeric character-set identifier.

Example The following code fragment returns “3,” representing US-ASCII:

var charset = Lang.characterSet();

Syntax Lang.exit(Message);

Parameters Message A message to pass back to the caller.

Returns No return value.

Example The following code fragment exits the script:

Lang.exit("Exit stage left");
175

BlackBerry Browser Version 4.2 Content Developer Guide
isInt()
Tests whether the passed string can be converted into an integer value using parseInt().

max()
Determines the maximum value of two passed values in either integer or floating-point form.

maxInt()
Returns the maximum value of an integer.

min()
Returns the minimum value of two passed values in either integer or floating-point form.

Syntax Lang.isInt(StringValue);

Parameters StringValue A string representation of an integer value.

Returns • Boolean true if StringValue converts to integer form.

• Boolean false if StringValue cannot be converted.

Example The following code fragments return “true“:

isOkay1 = Lang.isInt("98765");
isOkay2 = Lang.isInt("-98765");
isOkay3 = Lang.isInt("9.8e2");

The following code fragment returns “false“:

isOkay4 = Lang.isInt("intni");

Syntax Lang.max(Value1, Value2);

Parameters Value1 The first of two integers or floating-point values to be compared.

Value2 The second of two integers or floating-point values to be compared.

Returns The highest value passed.

Example The following sample returns “13“:

var maxValue = Lang.max(12, 13);

Syntax Lang.maxInt();

Returns The maximum integer value.

Example The following code fragment returns “2147483647“:

var theMax = Lang.maxInt();

Syntax Lang.min(Value1, Value2);

Parameters Value1 The first of two integer or floating-point values to be compared.

Value2 The second of two integer or floating-point values to be compared.

Returns The smallest value passed.

Example The following code fragment returns “12“:

var theMin = Lang.min(12, 13);
176

D: WMLScript language reference
minInt()
Returns the minimum value of an integer.

parseInt()
Converts a string into an integer value.

random()
Returns a random number between 0 and the passed value.

seed()
Initializes the random number generator.

Syntax Lang.minInt();

Returns The minimum integer value.

Example The following code fragment returns “-2147483648“:

var theMin = Lang.maxInt();

Syntax Lang.parseInt(StringInt);

Parameters StringInt Integer value in string form.

Returns Integer value.

Example The following code fragment returns “9876“:

var theInt1 = Lang.parseInt("9876");

The following code fragment stops parsing on the first error that it encounters, and
therefore returns “987“:

var theInt2 = Lang.parseInt("9876Hi!!");

Syntax Lang.random(MaxRange);

Parameters MaxRange Maximum integer value to draw from.

Returns A random integer within the specified range.

Example The following code fragment returns an arbitrary value between 0 and 9867:

var rndValue = Land.random(9867);

Syntax Lang.seed(SeedValue);

Parameters SeedValue An integer seed value.

Returns A null string.

Example The following code fragment initializes the random number generator with an initial
value of 98765:

var ret = Lang.seed(98765);
177

BlackBerry Browser Version 4.2 Content Developer Guide
Dialogs
The Dialogs library contains three dialog box handlers that are used to display alert, confirmation, and prompt
dialog boxes. Users must respond to the displayed message or prompt for the script to continue running.

alert()
Displays a standard alert dialog box with an OK button.

confirm()
Displays a standard confirmation dialog box with an OK button and aCancel button.

Function Description See

alert() Displays a standard alert dialog box with an OK button. 178

confirm() Displays a standard confirmation dialog box with an OK button and a Cancel button. 178

prompt() Displays a prompt dialog box that prompts users for input. 179

Syntax Dialogs.alert(Message);

Parameters Message A string containing the message to display.

Returns A null string.

Example The following code fragment displays a dialog box with the message “Wake up
now!”:

var ret = Dialogs.alert("Wake up now!");

Syntax Dialogs.confirm(Message, Button1, Button2);

Parameters All parameters are strings or string literals.

Message The confirmation message.

Button1 The text of the first dialog box button.

Button2 The text of the second dialog box button.

Returns • Boolean true if the user selects Button1.

• Boolean false if the user selects Button2.

Example The following example displays a dialog box with two buttons, Yes and No, and
contains the message “Exit?”:

var isOkay = Dialogs.confirm ("Exit?", "Yes", "No");
178

D: WMLScript language reference
prompt()
Displays a prompt dialog box that prompts users for input.

String
The String library contains 14 functions that can be used to manipulate strings.

The length of a string is determined by its total number of characters, including white space. Each character in the
string has an index position, where the first character is at position zero. A string can also be composed of a series
of elements that are delineated by separators. A separator can be any character.

The six types of white space are blank space, carriage return, form feed, line feed, horizontal tab, and vertical tab.

Syntax Dialogs.prompt(Message, Default);

Parameters All parameters are string or string literals.

Message The confirmation message.

Default The default response.

Returns A string response.

Example The following code fragment displays a dialog box that asks users their age. The
default age is 30:

var Age = Dialogs.prompt("Your age", "30");

Function Description See page

charAt() Returns a single character that is located at the passed offset position within the passed string. 180

compare() Compares strings where ranking is performed based on the ASCII value of each character within the
string.

180

elementAt() Locates a single element within the passed string buffer. 181

elements() Counts how many times a delimiter occurs within a passed buffer to determine the number of elements
in the buffer.

181

find() Searches for the first occurrence of the passed substring within the passed buffer. 181

format() Formats the passed numeric value as a string. 182

insertAt() Creates a new string from the passed buffer that includes the passed field and field delimiter, which is
inserted at the passed field element number.

183

isEmpty() Determines whether the passed string is empty. 183

length() Returns the length of a passed string. 183

removeAt() Deletes a field from passed buffer at a specific element position. 184

squeeze() Creates a string where all repeated white spaces in the passed string buffer are reduced to single spaces. 184

subString() Returns a portion of the passed string. 184

toString() Returns a string representation of the passed parameter. 185

trim() Eliminates any leading and trailing spaces from the passed string. 185
179

BlackBerry Browser Version 4.2 Content Developer Guide
charAt()
Returns a single character that is located at the passed offset position within the passed string.

compare()
Compares strings where ranking is performed based on the ASCII value of each character within the
string.

Syntax String.charAt(Buffer, Offset);

Parameters Buffer A buffer containing the source string.

Offset The offset position within the source buffer.

Returns A single character located at the offset position.

Example The following code fragment returns the character “c“:

var theChar1 = String.charAt("abcdef",3);

The following code fragment returns a null string:

var theChar2 = String.charAt("abcdef",8);

Syntax String.compare(String1, String2);

Parameters String1 The first string to compare.

String2 The second string to compare.

Returns • 0: The strings are identical.

• -1: The first string is less than the second.

• 1: The second string is less than the first.

Example The following code fragment returns “0“:

var theRes1 = String.compare("ABC", "ABC");

The following code fragment returns “1“:

var theRes2 = String.compare("abc", "ABC");

The following code fragment returns “-1“:

var theRes3 = String.compare("ABC", "abc");
180

D: WMLScript language reference
elementAt()
Locates a single element within the passed string buffer.

elements()
Counts how many times a delimiter occurs within a passed buffer to determine the number of
elements in the buffer.

find()
Searches for the first occurrence of the passed substring within the passed buffer.

Syntax String.elementAt(Buffer, Element, Delimiter);

Parameters Buffer A string buffer that contains delimited fields.

Element A numeric value set to the desired field number. If the passed value
is less than 0, then the first field is assumed. If it is greater than
maximum number of elements, then the last field is assumed.

Delimiter The character(s) used to delimit fields.

Returns The requested field.

Example The following code fragment returns “transformation“:

var Field = String.elementAt("In an extraordinary
transformation of heat to light, Gibbon rested.", 4, " ");

Syntax String.elements(Buffer, Delimiter);

Parameters Buffer A string buffer that contains delimited fields.

Delimiter The character(s) used to delimit fields.

Returns The total count of Delimiter within Buffer.

Example The following code fragment returns “20“:

var howMany = String.elements("This descent from unity into
multiplicity recalled Constantine's timid policy of 'dividing
whatever is united', but its effects were far different", " ");

Syntax String.find(Buffer, SubString);

Parameters Buffer The source string buffer.

SubString The substring to search for within the passed buffer.

Returns: • Offset value of first occurrence of SubString (0-n).

• -1 if SubString is not found.

Example The following code fragment returns ”2“:

var theFirst = String.find("Waterloo", "ter");
181

BlackBerry Browser Version 4.2 Content Developer Guide
format()
Formats the passed numeric value as a string.

Syntax String.format(FormatString, Value);

Parameters FormatString Specifies the format of the string, which is configured as follows:

%[width][.precision]type

• width: Optional. When specified, it specifies the minimum
number of characters that must be returned in the string.

• .precision: Optional. When specified, it specifies the required
decimal precision that is set based on the setting of type.

• type: Required. The type argument can have one of the
following values:

• d: The source is treated as a positive or negative integer
value in the form of [-]n, where n is one or more decimal
digits.

If .precision is specified, then the output value is padded
on the left side with up to the .precision number of zeroes.

• f: The source is treated as a positive or negative floating
point value in the form of [-]n.n, where n is one or more
decimal digits.

If .precision is specified, then it is used to set the number
of digits after the decimal point, with at least one digit
appearing before the decimal point. The default precision
is 6. If 0 or a null value is specified after the decimal point,
then the decimal component is truncated.

• s: The source is treated as a string.

In this case, the width argument can be used to specify the
minimum string size, and the .precision argument can be
used to specify the maximum string size.

Value The value to be formatted as a string.

Returns A formatted string.

Example The following code fragment returns “BlackBerry rules!“:

var s5 = String.format("BlackBerry %s", "rules!");

The following code fragment returns “ 98.765%“ (with eight preceding blank
spaces):

var s6 = String.format("%10.3F%%", 98.7654);
182

D: WMLScript language reference
insertAt()
Creates a new string from the passed buffer that includes the passed field and field delimiter, which
is inserted at the passed field element number.

isEmpty()
Determines whether the passed string is empty.

length()
Returns the length of a passed string.

Syntax String.insertAt(Buffer, Field, Element, Delimiter);

Parameters Buffer A string buffer that contains delimited fields.

Field The string field to insert.

Element A numeric element (0-n) where Field is to be inserted. If the passed
value is less than 0, then 0 is used. If it is greater than the maximum
number of elements, then Field is appended to the end of buffer.

Delimiter The delimiter character to be inserted after Field.

Returns The resulting string.

Example The following code fragment returns “1|99|2|“:

var nStr = String.insertAt("1|2|","99",1,"|");

Syntax String.isEmpty(Buffer);

Parameters Buffer The source string buffer.

Returns • Boolean true if the string is empty.

• Boolean false if it is not empty.

Example The following code fragment returns true:

var NULLString = "";
var IsNULL = String.isEmpty(NULLString);

Syntax String.length(Buffer);

Parameters Buffer The source string buffer.

Returns The string length (0-n).

Example The following code fragment returns 6:

var theLength = String.length("yellow");

The following code fragment returns 0:

var theLength = String.length("");
183

BlackBerry Browser Version 4.2 Content Developer Guide
removeAt()
Removes a field from the passed buffer at a specific element position.

squeeze()
Creates a string where all repeat white spaces in the passed string buffer are reduced to single
spaces.

subString()
Returns a portion of the passed string.

Syntax String.removeAt(Buffer, Element, Delimiter);

Parameters Buffer The source string buffer.

Element The field element to remove from the buffer.

Delimiter The character delimiter used to separate fields.

Returns Buffer, without the requested element.

Example The following code fragment returns “1|3|“:

var Res = String.removeAt("1|2|3|",1,"|");

Syntax String.squeeze(Buffer);

Parameters Buffer The source string buffer.

Returns Buffer with “squeezed” spaces.

Example The following code fragment returns “My BlackBerry is cool!“:

var SqzMe = String.squeeze("MygrgBlackBerrygrgisgrgcool!");

Syntax String.subString(Buffer, Start, Size);

Parameters Buffer The source string buffer.

Start The position of the first character of the substring in the source (0-n).

Size The total number of characters to extract.

Returns The requested substring.

Example The following code fragment returns “Berry“:

var SS = String.subString(“BlackBerry", 5, 5);
184

D: WMLScript language reference
toString()
Returns a string representation of the passed parameter.

trim()
Eliminates any leading and trailing spaces from the passed string.

URL
The URL library contains 14 functions that manipulate URLs. For example, you can extract the various portions of
the URL, escape and unescape special characters in the URL, determine the referring URL, and so on.

A URL is composed of some or all of the following components:

scheme://host:port/path;parameters$query#fragment.

Syntax String.toString(Value);

Parameters Value Any value.

Returns A string.

Example The following code fragment returns a string with the value “98.76”:

var theString = String.toString(98.76);

Syntax String.trim(Buffer);

Parameters Buffer The source string buffer.

Returns The string buffer without leading and trailing spaces.

Example The following code fragment returns “My BlackBerry is cool!“:

var isTrimmed = String.trim(" My BlackBerry is cool! ");

Function Description See page

escapeString() Returns a string where special characters are changed into hexadecimal escape sequences. 186

getBase() Returns the absolute URL (without the fragment) of the current WMLScript. 186

getFragment() Returns the fragment portion of the passed URL. 186

getHost() Returns the host that is specified within the passed URL. 187

getParameters() Returns the parameters within the last path segment of the passed URL. 187

getPath() Returns the path that is specified within the passed URL. 187

getPort() Returns the port specified within the passed URL. 188

getQuery() Returns the query portion of the passed URL. 188

getReferer() Returns the smallest relative URL for the page, deck, or script that called the current script. 188

getScheme() Returns the scheme within the passed URL. 189

isValid() Validates the syntax of the passed URL. 189

loadString() Returns the content that the passed absolute URL and content type refer. 189

resolve() Combines the passed base and relative URLs to return an absolute URL. 190

unescapeString() Returns a string where escaped characters have been restored to original form. 190
185

BlackBerry Browser Version 4.2 Content Developer Guide
escapeString()
Returns a string where special characters are changed into hexadecimal escape sequences.

The following special characters should be converted:

The resulting escaped characters are as follows:

getBase()
Returns the absolute URL (without the fragment) of the current WMLScript.

getFragment()
Returns the fragment portion of the passed URL.

• reserved characters: semicolon (;), slash (/), question mark (?), colon (:), at symbol (@),
ampersand (&), equal sign (=), plus sign (+), and dollar sign ($)

• unwise characters: left and right brace ({ }), verical slash (|), backslash (\), caret (^), left and
right brackets ([]), and apostrophe (‘)

• delimiters: greater than sign(>), less than sign (<), number sign (#), percent symbol (%), and
quotation marks (“)

• control characters (ASCII %00 to %1F and %7F)

• space (ASCII %20)

• upper range (ASCII %8F to %FF)

Syntax URL.escapeString(URL);

Parameters URL A string buffer containing the unescaped URL.

Returns A string buffer containing the escaped URL.

Example The following code fragment returns “http%3a%2f%2frim.com%2f”:

URL.escapeString("http://rim.com/");

Syntax URL.getBase();

Returns The absolute URL.

Example The following code fragment returns ”http://rim.com/script.wmls”:

var theURL = "http://rim.com/script.wmls#frag"
var absURL = URL.getBase();

Syntax URL.getFragment(URL);

Parameters URL The passed URL.

Returns The URL fragment.

Example The following code fragment returns “frag“:

var theURL = "http://rim.com/script.wmls#frag"
var theFrag = URL.getFragment(theURL);
186

D: WMLScript language reference
getHost()
Returns the host that is specified within the passed URL.

getParameters()
Returns the parameters within the last path segment of the passed URL.

getPath()
Returns the path that is specified within the passed URL.

Syntax URL.getHost(URL);

Parameters URL The passed URL.

Returns The host component of the URL.

Example The following code fragment returns “www.rim.com”:
var theURL = "http://www.rim.com/script.wmls";
var theHost = URL.getHost(theURL);

The following code fragment returns a null string, as the passed URL contains no
host component:

var theURL = "script.wmls";
var theHost = URL.getHost(theURL);

Syntax URL.getParameters(URL);

Parameters URL The passed URL.

Returns The parameters of the URL.

Example The following code fragment returns “param1;param2”:
var theURL = "http://rim.com/sample.php;param1;param2";
var parms = URL.getParameters(theURL);

The following code fragment returns a null string, as the passed URL contains no
parameters:

var theURL = "http://www.rim.com/script.wmls";
var parms = URL.getParameters(theURL);

Syntax URL.getPath(URL);

Parameters URL The passed URL.

Returns The path component.

Example The following code fragment returns “test/sample.php“:
var theURL = "http://rim.com/test/sample.php";
var thePath = URL.getPath(theURL);

The following code fragment returns a null string, as the passed URL contains no
path:

theURL = "http://rim.com/";
thePath = URL.getPath(theURL);
187

BlackBerry Browser Version 4.2 Content Developer Guide
getPort()
Returns the port number that is specified within the passed URL.

getQuery()
Returns the query portion of the passed URL.

getReferer()
Returns the smallest relative URL for the page, deck, or script that called the current script.

Syntax URL.getPort(URL);

Parameters URL The passed URL.

Returns The port component.

Example The following code fragment returns “80”:

var theURL = "http://www.rim.com:80";
var thePort = URL.getPort(theURL);

The following code fragment returns a null string, as the passed URL contains no
port:

theURL = "http://www.rim.com";
thePort = URL.getPort(theURL);

Syntax URL.Query(URL);

Parameters URL The passed URL.

Returns The query portion of the URL.

Example The following code fragment returns “4884”:

var theURL = "http://rim.com/sample.php?id=4884";
var theQuery = URL.getQuery(theURL);

The following code fragment returns a null string, as the passed URL contains no
query component:

theQuery = URL.getQuery("http://www.rim.com");

Syntax URL.getReferer();

Returns The referring URL.

Example The following code fragment might return the full URL or something relative such as
“mydeck.wml”. If no referrer exists, it returns a null string:

var whoCalled = URL.getReferer();
188

D: WMLScript language reference
getScheme()
Returns the scheme within the passed URL.

isValid()
Validates the syntax of the passed URL.

loadString()
Returns the content that the passed absolute URL and content type refer.

Syntax URL.getScheme(URL);

Parameters URL The passed URL.

Returns The scheme of the URL.

Example The following code fragment returns “http”:
var theURL = "http://www.rim.com/";
var theScheme = URL.getScheme(theURL);

The following code fragment returns a null string, as the passed URL contains no
scheme component:

var theURL = "www.rim.com/";
var theScheme = URL.getScheme(theURL);

Syntax URL.isValid(URL);

Parameters URL The passed URL.

Returns • Boolean true if the syntax is correct.

• Boolean false if the syntax is not correct.

Example The following code fragment returns “true”:
var theURL = "http://www.rim.com/";
var isOkay = URL.isValid(theURL);

The following code fragment returns “false”:
var theURL = "http:/www.rim.com/";
var isOkay = URL.isValid(theURL);

Syntax URL.loadString(URL, ContentType);

Parameters URL A string that contains an absolute URL.

ContentType A string that contains the accepted content type that must be
prefixed with “text/”.

Returns A string buffer that contains the requested page, deck, or script.

Example The following code fragment returns the page contents:
var theURL = "http://www.rim.com/index.shtml";
var theCT = "text/plain");
var theContent = URL.loadString(theURL, theCT);
189

BlackBerry Browser Version 4.2 Content Developer Guide
resolve()
Combines the passed base and relative URLs to return an absolute URL.

unescapeString()
Returns a string where escaped characters have been restored to original form.

Browser
The Browser library contains seven functions that can be used to access the information that is associated with the
WML cards. For example, you can return to a previously viewed card, go to a new card, refresh a card, and so on.

Syntax URL.resolve(baseURL, relURL);

Parameters baseURL The base portion of the passed URL (for example,
“http://www.rim.com/”).

relURL The relative path to a page, deck, or script (for example, “index.shtml”).

Returns The resulting absolute URL.

Example The following code fragment returns “http://www.rim.com/index.shtml”:

var baseURL = "http://www.rim.com/";
var relURL = "index.shtml");
var absURL = URL.resolve(baseURL, relURL);

Syntax URL.unescapeString(escURL);

Parameters escURL An escaped URL.

Returns An unescaped URL.

Example The following code fragment returns “http://rim.com/”:

var escURL = "http%3a%2f%2frim.com%2f";
var newURL = URL.unescapeString(escURL);

Function Description See page

getCurrentCard() Returns the smallest relative URL of the current card that the browser is processing. If the current
card has a different base than the current script, this function returns the absolute URL of the card.

191

getVar() Returns the value of the passed variable name within the current browser context. 191

go() Navigates the browser to the given URL. 191

newContext() Resets the browser context and clears all variables. 191

prev() Navigates the browser to the previous card. 192

refresh() Refreshes the current page by pulling it from the server. 192

setVar() Specifies the value of a variable. 192
190

D: WMLScript language reference
getCurrentCard()
Returns the smallest relative URL of the current card that the browser is processing. If the current
card has a different base than the current script, this function returns the absolute URL of the card.

getVar()
Returns the value of the passed variable name within the current browser context.

go()
Navigates the browser to the given URL.

newContext()
Resets the browser context and clears all variables.

Syntax Browser.getCurrentCard();

Returns A relative or absolute URL.

Example The following code fragment returns the current card being processed by the
browser:

var relURL = Browser.getCurrentCard();

Syntax Browser.getVar(strName);

Parameters strName The name of the variable for which the value is to be returned.

Returns String value or invalid if not found.

Example The following code fragment returns the variable name (for example, “revers”):

var varVal = Browser.getVar("userid");

Syntax Browser.go(navURL);

Parameters navURL A relative or absolute URL to which the browser is pointed.

Returns A null string.

Example The following code fragment navigates the browser to a relative URL:

var ret = Browser.go("newpage.wml");

The following code fragment navigates the browser to an absolute URL:

var ret = Browser.go("http://www.xyzzy.com/");

Syntax Browser.newContext();

Returns A null string.

Example The following code fragment resets the browser context:

var ret = Browser.newContext();
191

BlackBerry Browser Version 4.2 Content Developer Guide
prev()
Navigates the browser to the previous card.

refresh()
Refreshes the current page by pulling it from the server.

setVar()
Specifies the value of a variable.

Syntax Browser.prev();

Returns A null string.

Example The following code fragment navigates the browser to the previous card:

var ret = Browser.prev();

Syntax Browser.refresh();

Parameters None.

Returns A null string.

Example The following code fragment refreshes the current page:

var ret = Browser.refresh();

Syntax Browser.setVar(varName, varValue);

Parameters varName The name of the variable for which the value is to be specified.

varValue The value to assign to varName.

Returns • Boolean true on success.

• Boolean false on failure.

Example The following code fragment sets the variable password to a value of “xyzzy”:

var isSet = Browser.setVar("password", "xyzzy");
192

E

Scripting Basics

Reserved words
The following reserved words in WMLScript and JavaScript cannot be used to name functions, variables, methods,
or objects:

Reserved words
Statements
Operators and expressions

• abstract

• access

• agent

• Boolean

• break

• byte

• case

• catch

• char

• class

• const

• continue

• debugger

• default

• delete

• div

• do

• domain

• double

• else

• equiv

• enum

• export

• extends

• extern

• false

• final

• finally

• float

• for

• function

• goto

• header

• http

• if

• implements

• import

• in

• instanceof

• int

• interface

• isvalid

• long

• meta

• name

• native

• new

• null

• package

• path

• private

• protected

• public

• return

• short

• sizeof

• static

• struct

• super

• switch

• synchronized

• this

• throw

• throws

• transient

• true

• try

• typeof

• url

• use

• user

• var

• void

• volatile

• while

• with

BlackBerry Browser Version 4.2 Content Developer Guide
Statements
The BlackBerry Browser supports the following WMLScript and JavaScript statements:

Statement Description Example Supported by

WMLScript JavaScript

break Stops a for or while loop statement. All processing is
immediately stopped inside the loop and the loop is
exited. The program continues with the first line of code
(if any) after the terminated loop.

Using a break statement outside of a for or while
loop statement generates an error.

var i = 0;
while (i < 6) {
if (i == 3) {
break;
 i++;

}
return i*x;
}

a a

continue Stops a block of statements inside a for or while loop
statement and redirects the program to another block of
statements inside the loop.

In a for loop, the program jumps to the for counting
variable test expression.

In a while loop, the program jumps to the while
condition test.

i = 0;
n = 0;
while (i < 5) {
i++;
if (i == 3)
continue;

n += i;
}

a a

do ...
while

Runs one or more statements at least once, checking
that a certain condition is met each time before
repeating. If that condition is not met, then control
moves to the statement immediately after the loop.

var i = 0;
do {
document.write(i + ".
");
i+=2;
}
while(i<20);

a

for Repeats a block of statements as long as a stated test
condition, based upon a counting mechanism, remains
true.

for(i=0; i<10; i++)
document.write(i + ".
");

a a

for ...
in

Iterates a declared variable over every property in a
specified object.

var i;
for(i in mimeArray)
document.write(i + "
");

a

if ...
else

Evaluates a specified expression contained in the if
statement to determine if it is true or false. If true, a
block of statements associated in the if statement is
run. If false, the if statement is immediately exited,
unless an optional else clause exists.

Use the optional else clause to run a block of
statements if the specified condition is false. Note that
you cannot provide a test expression for the else
statement.

if(calcaverage (x,y,z) < 10)
document.write("The average is

less than 10.");
else
document.write("The average is

10 or more.");

a a

return Specifies the value to be returned by a function and
performs the act of returning that value to where the
function was called from.

function square(x) {
return x * x;
}

a a
194

E: Scripting Basics
switch Tests an expression against a number of case options ,
then runs the statements associated with the first case
that matches the expression. If no match is found, the
program looks for a set of default statements to run, and
if these are not found, it carries on with the statement
immediately following switch.

switch (modelNumber) {
case "6700" :
document.write ("monochrome");
break;

case "7700" :
document.write ("color");
break;

default :
document.write ("Sorry, " + i +

" is not a valid
model.
");

}

a

var Declares a variable. Outside a function it is optional.
While a variable can be declared by assigning it a value,
there are two cases in functions where using var is
necessary:

• If a global variable of the same name exists.
• If recursive or multiple functions use variables of the

same name.

You can also declare more than one variable and,
optionally, assign values at the same time.

var i = 0;
var num_hits = 0, cust_no = 0;

a a

while Repeats a block of statements as long as a stated test
condition, based upon an evaluated expression, remains
true.

var i = 0;
while(i<11) {
document.write (i +
");
i++;
}

a a

with A statement that establishes the default object for a set
of statements. Within the set of statements, any property
references that do not specify an object are assumed to
be for the default object.

with(displayType) {
if(model < 7000)
document.write("monochrome");

else
document.write("color");

}

a a

Statement Description Example Supported by

WMLScript JavaScript
195

BlackBerry Browser Version 4.2 Content Developer Guide
Operators and expressions
The Blackberry Browser supports the following WMLScript and JavaScript operators and expressions:

Operator
type

Symbol Description Example Supported by

WMLScript JavaScript

Arithmetic + Addition. Returns the sum of two numerical
values.

if x = 5 and y = 2
then x + y returns 7

a a

- Subtraction. Subtracts one numerical value from
another.

if x = 5 and y = 2
then x - y returns 3

a a

* Multiplication. Returns the product of two
numerical values.

if x = 5 and y = 2
then x * y returns 10

a a

/ Division. Divides one numerical value by another. if x = 5 and y = 2
then x / y returns 2.5

a a

div Integer division. Divides one numerical value by
another, and rounds the result down to the
nearest whole number.

if x = 5 and y = 2
then x div y returns 2

a

% Remainder. Returns the integer remaining when
one operand is divided by another.

if x = 5 and y = 2
then x % y returns 1

a a

Unary + Positive. Precedes an operand to indicate it is
greater than zero.

if x = 5
then +x returns 5

a a

- Negation. Precedes an operand and negates it. if x = 5
then -x returns -5

a a

++ Increment. When positioned

• after the operand, it returns the value before
incrementing.

• before the operand, it increments before
returning the value.

if x= 5:

• y = x++ sets y to 5, then increases x to
6

• y = ++x increases x to 6, then sets y to
6

a a

-- Decrement. When positioned

• after the operand, it returns the value before
decrementing.

• before the operand, it decrements before
returning the value.

if x= 5:

• y = x++ sets y to 5, then decreases x to
4

• y = ++x decreases x to 4, then sets y to
4

a a

~ Bitwise NOT. Flips the bit values of its operand. ~ 9 returns 6 (1001 becomes 110) a a
196

E: Scripting Basics
Comparison == Equal. Returns true if the values of the left and
right operands are identical.

if x = 5 and y = 2
then x == y returns false

a a

> Greater than. Returns true if the value of the left
operand is higher than the value of the right
operand.

if x = 5 and y = 2
then x > y returns true

a a

< Less than. Returns true if the value of the left
operand is lower than the value of the right
operand.

if x = 5 and y = 2
then x < y returns false

a a

>= Greater than or equal. Returns true if the value of
the left operand is equal to or greater than the
value of the right operand.

if x = 5 and y = 2
then x >= y returns true

a a

<= Less than or equal. Returns true if the value of the
left operand is equal to or less than the value of
the right operand.

if x = 5 and y = 2
then x <= y returns false

a a

!= Not equal. Returns true if the values of the left
and right operands are not equal.

if x = 5 and y = 2
then x != returns true

a a

Bitwise << Left shift. Shifts the digits of the binary
representation of the first operand to the left by
the number of places specified by the second
operand. The spaces that are created to the right
are filled in by zeros, and any digits falling off the
left are discarded.

9 << 2 returns 36
(1001 becomes 100100)

a a

>> Sign-propagating right shift. Shifts the digits of
the binary representation of the first operand to
the right by the number of places specified by the
second operand, discarding any numbers shifted
off to the right. Copies of the left most bit are
shifted in from the left.

9 >> 2 returns 2
(1001 becomes 10)

-9 >> 2 returns -3, because the sign is
preserved

a a

>>> Right shift with zero fill. Shifts the digits of the
binary representation of the first operand to the
right by the number of places specified by the
second operand, discarding any digits shifted off
to the right and adding zeros to the left.

19 >>> 2 returns 4
(10011 becomes 100)

a a

& AND. Returns “1” for each bit position where the
corresponding bits of its operands is “1” .

15 & 9 would return 9
(1111 & 1001 = 1001)

a a

| OR. Returns “1” for each bit position where one or
both of the corresponding bits of its operands is
“1” .

15 | 9 would return 15
(1111 | 1001 = 1111)

a a

^ Exclusive OR. Returns “1” for each bit position
where only one (not both) of the corresponding
operands is “1” .

15 ^ 9 would return 6
(1111 ^ 1001 = 110)

a a

Operator
type

Symbol Description Example Supported by

WMLScript JavaScript
197

BlackBerry Browser Version 4.2 Content Developer Guide
Assignment = Assignment. Assigns a literal or numerical value
on the right to the variable on the left.

x = y (sets the value of x to the value of y) a a

+= Addition and assignment. Adds the operand to
the variable, and sets the variable to the result.

if x = 5 and y = 2
then x += y returns 7
(equivalent to x = x + y)

a a

-= Subtraction and assignment. Subtracts the
operand from the variable, and sets the variable to
the result.

if x = 5 and y = 2
then x -= y returns 3
(equivalent to x = x - y)

a a

*= Multiplication and assignment. Multiplies the
variable and the operand, and sets the variable to
the result.

if x = 5 and y = 2,
then x *= y returns 10
(equivalent to x = x * y)

a a

/= Division and assignment. Divides the variable by
the operand, and sets the variable to the result.

if x = 5 and y = 2,
then x /= y returns 2.5
(equivalent to x = x / y)

a a

div= Integer division and assignment. Divides the
variable by the operand, rounds the result down to
the nearest whole number, and sets the variable
to the result.

if x = 5 and y = 2,
then x div= y returns 2
(equivalent to x = x div y)

a

%= Remainder and assignment. Determines the
integer remainder when the variable is divided by
the operand, and sets the variable to the
remainder value.

if x = 5 and y = 2,
then x %= y returns 1
(equivalent to x = x % y)

a a

<<= Bitwise left shift and assignment. Shifts the digits
of the bitwise variable left by the number of
positions specified by the operand, and sets the
variable to the result. This operation is not
permissible if the initial value of the variable is
negative.

if x = 9 and y = 2,
then x <<= y returns 36
(equivalent to x = x << y)

a a

>>= Bitwise right shift and assignment. Shifts the
digits of the bitwise variable right by the number
of positions specified by the operand, and sets the
variable to the result. This operation is not
permissible if the initial value of the variable is
negative.

if x = 9 and y = 2,
then x >>= y returns 2
(equivalent to x = x >> y)

a a

>>>= Bitwise right shift zero fill and assignment. Shifts
the digits of the bitwise variable right by the
number of spaces specified by the operand, and
sets the value of the variable to the result.

if x = 19 and y = 2,
then x >>>= y returns 4
(equivalent to x = x >>> y)

a a

&= Bitwise AND and assignment. Performs a bitwise
AND operation on the variable and the operand,
and sets the value of the variable to the result.

if x = 15 and y = 9,
then x &= y returns 9
(equivalent to x = x & y)

a a

|= Bitwise OR and assignment. Performs a bitwise
OR operation on the variable and the operand,
and sets the value of the variable to the result.

if x = 15 and y = 9,
then x |= y returns 15
(equivalent to x = x | y)

a a

^= Bitwise exclusive OR and assignment. Performs a
bitwise exclusive OR operation on the variable
and the operand, and sets the value of the variable

if x = 15 and y = 9,
then x ^= y returns 6
(equivalent to x = x ^ y)

a a

Operator
type

Symbol Description Example Supported by

WMLScript JavaScript
198

to the result.

E: Scripting Basics
Logical && AND. Returns a Boolean true if both of the given
expressions are true.

if x = 5 and y = 2
then (y < x) && (y > (x >>2)) returns true

a a

|| OR. Returns a Boolean true if one of the given
expressions are true.

if x = 5 and y = 2
then (x < y) || (y> (x >> 2)) returns true

a a

! NOT. Returns Boolean true if the given expression
is false, and returns Boolean false if the given
expression is true.

if x = 5 and y = 2
then ! (x < y) returns true, and (y < x)
returns false

a a

String + Concatenate. Joins two string values together. "new" + "_string" returns
"new_string"

a a

+= Concatenate and assignment. Adds a string to the
string variable, and sets the variable to the result.

If mystring = "new" then
mystring += "_string" returns
"new_string"

a a

Special ?: Conditional operator that takes three operands
and is used to replace simple if statements. The
first operand is a condition that evaluates to true
or false, the second is to be returned on true, and
the third to be returned on false.

var IsOkay = (Value == "Food"
) ? 1 : 0;

a a

, Comma. Used to include multiple expressions
where only one is required, such as in a for loop.
It evaluates both its operands and returns the
value of the second.

for (el = 0, id = 100;
el < 10; el++, id+=10)

a a

typeof Returns the data type of the given variable as one
of number, string, Boolean, object, or function.

var result = typeof data; a a

isvalid Tests whether an expression is valid. It returns
true if the passed expression is valid, or else it
returns false.

var IsOk_1 = isvalid (99/0); a

new Creates an instance of a user-defined object type
or of one of the following built-in object types:
array, Boolean, date, function, math, number, or
string. Uses the following syntax:

objectName = new objectType
(param1 [,param2] ...[,paramN])

formsArray = new array (form1,
form2, form3)

a

delete Deletes an object, an object property, or a
specified element in an array, returning true if the
operation is possible, and false if it is not.

x=42
delete x

a

void Specifies an expression to be evaluated without
returning a value.

void (document.form.
submit())

a

Operator
type

Symbol Description Example Supported by

WMLScript JavaScript
199

BlackBerry Browser Version 4.2 Content Developer Guide
200

©2007 Research In Motion Limited

Published in Canada.

	Contents
	Getting started with the BlackBerry Browser
	Using the BlackBerry Browser
	Browser configurations
	BlackBerry Browser configuration
	Internet Browser configuration
	WAP Browser configuration

	Browser feature support
	Browser content support
	Managing multipart content
	Determining which markup languages are accepted
	Image conversion

	Browser interface and features
	Browser screen
	Browser menus
	WML <do> elements
	Links
	Option lists

	Browser features
	History
	Cookies
	Cache
	Bookmarks

	Designing wireless web content for the BlackBerry Browser
	Creating effective content for the BlackBerry Browser
	Follow basic web design principles
	Organize content effectively
	Select the most appropriate markup language
	Consider BlackBerry device screen sizes
	Encourage text entry
	Minimize download time
	Improve rendering time

	Creating effective images
	Defining queues for offline form submission
	Create an HTTP header property file
	Add queuing parameters directly to the web page

	Making requests for content only when content has changed
	Delivering device-specific content
	Write a browser detection script
	Send device-appropriate images

	Creating XHTML pages
	Using XHTML-MP
	Creating XHTML-MP-compliant sites

	Creating an XHTML-MP page
	Code sample: Creating an XHTML-MP web page

	Creating WML pages
	Using WML
	WML design tips

	Creating a WML page
	Code sample: Creating a WML web page

	Creating browser push applications
	Push applications
	BlackBerry Browser configuration push support
	WAP Browser configuration push support

	The BlackBerry push process
	Defining push attributes
	BlackBerry MDS Connection Service push attributes
	Browser push HTTP headers

	RIM push service implementation
	Writing a RIM push service application
	Code sample: Creating a browser push application using the RIM push service implementation

	PAP push service implementation
	Writing a PAP push service application
	Code sample: Creating a browser push application using the PAP push service implementation

	Testing web pages
	Using the simulators

	XHTML language reference
	XHTML-MP reference
	Structural elements
	Text and text formatting elements
	Link elements
	List elements
	Basic form elements
	Basic table elements
	Image elements
	Object elements
	Meta information
	Script references

	WAP CSS reference
	Element and CSS property matrix

	WML language reference
	WML reference
	Structure elements
	Text and text formatting elements
	Link elements
	Table elements
	Image elements
	Event elements
	Task elements
	Input elements
	Variable elements

	JavaScript language reference
	Using JavaScript
	Supported JavaScript objects
	BlackBerry
	BlackBerry Location
	Navigator
	Document
	Form
	Screen
	Window
	Window History

	WMLScript language reference
	Using WMLScript
	WMLScript libraries
	Lang
	Dialogs
	String
	URL
	Browser

	Scripting Basics
	Reserved words
	Statements
	Operators and expressions

